Welcomel
COMP1511 18s1

Programming Fundamentals

COMP1511 18s1
— Lecture 18 —
Fruit Bot + More Linked Lists

Andrew Bennett

<andrew.bennett@unsw.edu.au>

Overview

after this lecture, you should be able to...
start on the last assignment: Fruit Bot
work with multi-file C programs
understand the purpose of .h files
have a better understanding of linked lists
write code to free a linked list
solve simple problems using linked lists

(note: you shouldn’t be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!) give you the foundations you need to develop these skills. remember: programming is

like learning any other language, it takes consistent and regular practice.)

Admin

Don't panic!
assignment 2 due yesterday
(if you haven't started yet.... @)
assignment 3 out now!
this week’s tute/lab help you get started

week 10 weekly test due thursday
don't forget about help sessions!

see course website for details

introducing: Fruit Bot

(assignment 3)

PTYT PY IF

Assignment Spec i

https://cgi.cse.unsw.edu.au/~cs1511/18s1/assignments/ass3/index.html

https://cgi.cse.unsw.edu.au/~cs1511/18s1/assignments/ass3/index.html

Fruit Bot °

note: do not change the structs

stateless bot
(similar to Intensity)
world is randomly generated

(you can't assume any particular fruit is/isn’t there)

An Aside: Multiple C Files

until now we've only had one .c file per program

but, we can make programs with multiple .c files

Scope

to call a function you need to know about its
return type
input parameters

(we call this the API)

Using Functions From Another File

first.c

void hello(void) ;
int square(int n);

int main(void) {

hello() ;

printf("%d", square(5));
}

void hello(void) {
printf("Hello!\n");

}

int square(int n) {
return n*n;

}

$ dcc -o first first.c
$./first

Hello!

)

Using Functions From Another File

second.c

int main(void) {
hello() ;
printf("%d", square(5));

$ dcc -0 second second.c
27?2727

$./second
27277

Using Functions From Another File

first.h

ifndef
define

void hello(void) ;
int square(int n);

endif

Using Functions From Another File

second.c

include "first.h"

int main(void) {
hello() ;
printf("%d", square(5));

$ dcc -0 second second.c first.c
$./second

Hello

25

and now for some more
Linked Lists

<REVIEW>

The node struct

struct node {
int data;
struct node *next;

Interacting with a node struct

struct node {
int data;

struct node *next;

struct node hello;

hello.data =
hello.next =

10;

Making a new node

struct node *make node(int value) {
struct node *new = malloc(l * sizeof(struct node));
new->data = value;
new->next =
return new,

struct node *hello = make node(10),;

Freeing a node

// In accordance with Newton's 3rd Law of Memory Allocation
// "For every malloc, there is an equal and opposite free"
void free node(struct node *node) {

free(node) ;

struct node *hello = make _node(10) ;
free_node(hello);

Node pointers vs allocated nodes

reference to a node

arrow

E struct node *curr ... }

VS
making (allocating) a new node

circle

E ... = malloc(l * sizeof(struct node)) ; }

Node pointers vs allocated nodes

reference to a node

arrow

E struct node *curr ... }

VS
making (allocating) a new node

circle

)
.
.
.
I

malloc(l * sizeof(struct node)); }

Node pointers vs allocated nodes

reference to a node (arrow) vs
making (allocating) a new node (circle)

Srrack node « Stuct node

= (O
cu(y

F) ey
Loﬂ nalloc

Sttt node ¢ cuir = malloc (Lesizcof (shiuck node))

array/list “traversal”

(going through every element)

Traversing... an Array

void fillArray (int array[ARRAY_SIZE], int value) {
int i = 0;
while (i < ARRAY_SIZE) {
array[i] = value; // set the value
i++; // move to next element

Traversing... a Linked List

void filllList (struct node *1list, int value) {
struct node *curr = list;

while (curr !=) |

curr->data = value; // set the value

curr = curr->next; // move to next node
}

The Standard List Loop

struct node *curr = 1list;

while (curr !=) |

curr = curr->next;

The Standard List Loop — List Length

How can we calculate the length of a list?

i.e. how many nodes are in the list

struct node *curr = list;

int num_nodes = 0;

while (curr !=) |

num_nodes += 1;

curr = curr->next,

The Standard List Loop — List Sum

How can we sum all of the elements in a list?

i.e. add the values of all of the nodes together

struct node *curr = list;

while (curr !=) |

curr = curr->next;

</REVIEW>

More List Iteration

does the list contain a certain value?

Freeing a List

“For every malloc, there is an equal and opposite free.”

we need to free our entire list when we're done with it

