
0

Welcome!
COMP1511 18s1

Programming Fundamentals

1COMP1511 18s1
— Lecture 18 —

Fruit Bot + More Linked Lists
Andrew Bennett

<andrew.bennett@unsw.edu.au>

2Overview
after this lecture, you should be able to…

start on the last assignment: Fruit Bot
work with multi-file C programs

understand the purpose of .h files
have a better understanding of linked lists

write code to free a linked list
solve simple problems using linked lists

(note: you shouldn’t be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!) give you the foundations you need to develop these skills. remember: programming is

like learning any other language, it takes consistent and regular practice.)

3Admin

Don’t panic!
assignment 2 due yesterday

(if you haven’t started yet…. ☹)
assignment 3 out now!

this week’s tute/lab help you get started

week 10 weekly test due thursday
don’t forget about help sessions!

see course website for details

4introducing: Fruit Bot
(assignment 3)

…

5Assignment Spec
https://cgi.cse.unsw.edu.au/~cs1511/18s1/assignments/ass3/index.html

https://cgi.cse.unsw.edu.au/~cs1511/18s1/assignments/ass3/index.html

6Fruit Bot
note: do not change the structs

stateless bot
(similar to Intensity)

world is randomly generated
(you can’t assume any particular fruit is/isn’t there)

7An Aside: Multiple C Files
until now we’ve only had one .c file per program
but, we can make programs with multiple .c files

8Scope
to call a function you need to know about its

return type
input parameters
(we call this the API)

9Using Functions From Another File
first.c

void hello(void);

int square(int n);

int main(void) {

 hello();

 printf("%d", square(5));

}

void hello(void) {

 printf("Hello!\n");

}

int square(int n) {

 return n*n;

}

$ dcc -o first first.c

$./first

Hello!

25

10Using Functions From Another File
second.c

int main(void) {

 hello();

 printf("%d", square(5));

}

$ dcc -o second second.c

????

$./second

????

11Using Functions From Another File
first.h

#ifndef FIRST_H

#define FIRST_H

void hello(void);

int square(int n);

#endif

12Using Functions From Another File
second.c

#include "first.h"

int main(void) {

 hello();

 printf("%d", square(5));

}

$ dcc -o second second.c first.c

$./second

Hello

25

13and now for some more
Linked Lists

14<REVIEW>

15The node struct

struct node {

 int data;

 struct node *next;

};

16Interacting with a node struct

struct node {

 int data;

 struct node *next;

};

// "struct node hello" (no *)

// "hello" is an actual node in the function's memory

struct node hello;

hello.data = 10;

hello.next = NULL;

// in the function's memory

// ______

// hello | 10 |

// |------|

// | NULL |

// |______|

17Making a new node

// Allocates memory for a new node; returns its address

struct node *make_node(int value) {

 struct node *new = malloc(1 * sizeof(struct node));

 new->data = value;

 new->next = NULL;

 return new;

}

// "struct node * hello"

// "hello" is a pointer to a node,

// it just stores the _address_

// (of the memory we get from malloc)

struct node *hello = make_node(10);

// in the heap (malloced memory)

// ______

// hello | 10 |

// |------|

// | NULL |

// |______|

18Freeing a node

// In accordance with Newton's 3rd Law of Memory Allocation

// "For every malloc, there is an equal and opposite free"

void free_node(struct node *node) {

 free(node);

}

struct node *hello = make_node(10);

free_node(hello);

19Node pointers vs allocated nodes
reference to a node

arrow

struct node *curr ...

vs
making (allocating) a new node

circle

... = malloc(1 * sizeof(struct node));

20Node pointers vs allocated nodes
reference to a node

arrow

struct node *curr ...

vs
making (allocating) a new node

circle

... = malloc(1 * sizeof(struct node));

21Node pointers vs allocated nodes
reference to a node (arrow) vs

making (allocating) a new node (circle)

22array/list “traversal”
(going through every element)

23Traversing… an Array

void fillArray (int array[ARRAY_SIZE], int value) {

 int i = 0;

 while (i < ARRAY_SIZE) {

 array[i] = value; // set the value

 i++; // move to next element

 }

}

24Traversing… a Linked List

void fillList (struct node *list, int value) {

 struct node *curr = list;

 while (curr != NULL) {

 curr->data = value; // set the value

 curr = curr->next; // move to next node

 }

}

25The Standard List Loop

struct node *curr = list;

while (curr != NULL) {

 ?????

 curr = curr->next;

}

26The Standard List Loop – List Length
How can we calculate the length of a list?

i.e. how many nodes are in the list

struct node *curr = list;

int num_nodes = 0;

while (curr != NULL) {

 num_nodes += 1;

 curr = curr->next;

}

27The Standard List Loop – List Sum
How can we sum all of the elements in a list?

i.e. add the values of all of the nodes together

struct node *curr = list;

// int num_nodes = 0;

?????

while (curr != NULL) {

 // num_nodes += 1;

 ?????

 curr = curr->next;

}

28</REVIEW>

29More List Iteration
does the list contain a certain value?

30Freeing a List
“For every malloc, there is an equal and opposite free.”
we need to free our entire list when we’re done with it

