
KR & R! © Brachman & Levesque 2005 Tradeoff

Limit expressive power?

Defaults, probabilities, etc. can all be thought
of as extensions to FOL, with obvious
applications
Why not strive for the union of all such
extensions?

! a language co-extensive with English?

Problem: automated reasoning
Lesson here:

! reasoning procedures required for more expressive
languages may not work very well in practice

Tradeoff: expressiveness vs. tractability
Overview:

– a Description Logic example
– limited languages
– the problem with cases
– vivid reasoning as an extreme case
– less vivid reasoning
– hybrid reasoning systems

KR & R! © Brachman & Levesque 2005 Tradeoff

Simple Description Logic

Consider the language FL defined by:
! <concept> ::= atom

! !| (AND <concept> ... <concept>)
! !| (ALL <role> <concept>)
! !| (SOME <role>)

!
! <role> ::= atom
! ! | (RESTR <role> <concept>)

Example:
• (ALL child (AND FEMALE STUDENT))

an individual whose children are female students
• (ALL (RESTR child FEMALE) STUDENT)

an individual whose female children are students
! there may or may not be male children and they may or

may not be students

Extension functions as before with
! Φ[(RESTR r c)] =
!{ (x,y) | (x,y) ∈ Φ[r] and y ∈ Φ[c] }

Subsumption defined as usual

KR & R! © Brachman & Levesque 2005 Tradeoff

Computing subsumption

First for FL¯ = FL without the RESTR operator
• put the concepts into normalized form

! (AND p1 ... pk

!(SOME r1) ... (SOME rm)
!(ALL s1 c1) ... (ALL sn cn))

• to see if C subsumes D make sure that
1.!for every p ∈ C, p ∈ D

2.!for every (SOME r) ∈ C, (SOME r) ∈ D
3.!for every (ALL s c) ∈ C, find an (ALL s d) ∈ D

such that c subsumes d.

Can prove that this method is sound and
complete relative to definition based on
extension functions
Running time:

• normalization is O(n2)
• structural matching:

! for each part of C, find a part of D:
! !again O(n2)

What about all of FL, including RESTR?

KR & R! © Brachman & Levesque 2005 Tradeoff

Subsumption in FL

Not so easy:
• cannot settle for part-by-part matching

! (ALL (RESTR friend (AND MALE DOCTOR))
!! ! (AND TALL RICH))

! !subsumes
! (AND! (ALL (RESTR friend MALE)!
!! ! ! (AND TALL HAPPY)) !
!! (ALL (RESTR friend DOCTOR)
!! ! ! (AND RICH SURGEON)))

• complex interactions
! (SOME (RESTR r (AND a b)))

! !subsumes
! (AND ! (SOME (RESTR r (AND c d)))
!! (ALL (RESTR r c) (AND a e))
!! (ALL (RESTR r (AND d e)) b))

In general: can prove that FL is powerful enough to
encode all of propositional logic

! there is a mapping Ω from CNF wffs to FL where
|= (α ⊃ β) iff Ω[α] is subsumed by Ω[β]

! but |= (α ⊃ (p∧¬p)) iff α is unsatisfiable

Conclusion: there is no good algorithm for FL
! !! unless P=NP

KR & R! © Brachman & Levesque 2005 Tradeoff

Moral

Even small doses of expressive power come
at a computational price
Questions:

• what properties of a representation language control
its difficulty?

• how far can expressiveness be pushed without losing
good algorithms

• when is easy reasoning adequate for KR purposes?

These questions remain unanswered, but
some progress has been made

• need for case analyses is a major factor
• tradeoff for DL languages is reasonably well

understood
• best addressed (perhaps) by looking at working

systems

Approach:
• find reasoning tasks that are tractable
• analyze difficulty in extending them

KR & R! © Brachman & Levesque 2005 Tradeoff

Limited languages

Some reasoning problems that can be formulated in
terms of FOL entailment

KB |= α

admit very specialized methods because of the
restricted form of either KB or α

! although problem could be solved using full
resolution theorem proving, there is no need

Example 1: Horn clauses
• SLD resolution provides more focussed search
• in propositional case, a linear procedure is available

Example 2: Description logics
• Can do DL subsumption using Resolution
! Introduce predicate symbols for concepts, and
“meaning postulates” like

! !∀x[P(x) ≡ ∀y(Friend(x,y) ⊃ Rich(y))
!! ! ∧ ∀y(Child(x,y) ⊃
!! ! ! ! ∀z(Friend(y,z) ⊃ Happy(z)))]

! for ! (AND !(ALL friend RICH)
!! ! (ALL child (ALL friend HAPPY)))

! Then ask if MP |= ∀x[P(x) ⊃ Q(x)]

?

KR & R! © Brachman & Levesque 2005 Tradeoff

Equations

Example 3: linear equations
Let E be the usual axioms for arithmetic

! ∀x∀y(x+y = y+x), ∀x(x+0 = x), ...

Then have the following:
! E |= (x+2y=4 ∧ x–y=1) ⊃ (x=2 ∧ y=1)

Can “solve” linear equations using Resolution

But there is a much better way:
! Gauss-Jordan method with back substitution

– subtract (2) from (1): 3y = 3
– divide by 3: y = 1
– substitute in (1): x = 2

In general, a set of linear equations can be
solved in O(n3) operations
This idea obviously generalizes!

! always advantageous to use a specialized procedure
when it is available, rather than a general method like
Resolution

Peano
axioms

KR & R! © Brachman & Levesque 2005 Tradeoff

When is reasoning hard?

Suppose that instead of a set of linear equations, we
have something like

! (x+2y=4 ∨ 3x–y=7) ∧ x–y=1

Can still show using Resolution: y > 0

To use GJ method, we need to split cases:
! x+2y=4 ∧ x–y=1 ß y=1

! 3x–y=7 ∧ x–y=1 ß y=2

What if 2 disjunctions?
! (eqnA1 ∨ eqnB1) ∧ (eqnA2 ∨ eqnB2)

! there are four cases to consider with GJ method

What if n binary disjunctions?
! (eqnA1 ∨ eqnB1) ∧ ... ∧ (eqnAn ∨ eqnBn)

! there are 2n cases to consider with GJ method
! !with n=30, would need to solve 109
!systems of equations!

Conclusion: even assuming a very efficient method,
case analysis is still a big problem

Question: can we avoid case analyses??

∴ y > 0

KR & R! © Brachman & Levesque 2005 Tradeoff

Expressiveness of FOL

Ability to represent incomplete knowledge
! P(a) ∨ P(b)! ! ! but which?
! ∃x P(x)! ! ! ! P(a) ∨ P(b) ∨ P(c) ∨ ...

! !and even
! c ≠ 3! ! ! ! c=1 ∨ c=2 ∨ c=4 ∨ ...

Reasoning with facts like these requires somehow
“covering” all the implicit cases

! languages that admit efficient reasoning do not allow
this type of knowledge to be represented

e.g. Horn clauses, description logics, linear equations, ...

One way to ensure tractability:
! somehow restrict contents of KB so that reasoning by

cases is not required

But is complete knowledge enough for tractability?
! suppose KB |= α or KB |= ¬α, as in the CWA

! Get: queries reduce to KB |= λ, literals
! But: it can still be hard to answer for literals

! example: KB = {(p ∨ q), (¬p ∨ q), (¬p ∨ ¬q)}

! Have: KB |= ¬p ∧ q! ! complete
! !even literals may require case analysis

KR & R! © Brachman & Levesque 2005 Tradeoff

Vivid knowledge
Note: If KB is complete and consistent, then it is
satisfied by a unique interpretation I

! Why? define I by I |= p iff KB |= p
! Then for any I*, if I* |= KB then I* agrees with

I! ! ! ! ! on all atomic sentences p

Get: KB |= α iff I |= α
! entailments of KB are sentences that are true at I
! explains why queries reduce to atomic case

! (α ∨ β) is true iff α is true or β is true, etc.
! if we have the I, we can easily determine

what is or is not entailed

Problem: KB can be complete and consistent, but
unique interpretation may be hard to find

as in the type of example on the previous slide

! want a KB that wears this unique interpretation
on its sleeve

Solution: a KB is vivid if it is a complete and
consistent set of literals (for some language)

! e.g. KB = {¬p, q} ! specifies I directly

To answer queries need only use KB+, the positive
literals in KB, as in the CWA!

ignoring
quantifiers
for now

KR & R! © Brachman & Levesque 2005 Tradeoff

Quantifiers
As with the CWA, we can generalize the notion of vivid
to accommodate queries with quantifiers

A first-order KB is vivid iff for some finite set of positive
function-free ground literals KB+,

! KB = KB+ ∪ Negs ∪ Dc ∪ Un

Get a simple recursive algorithm for KB |= α:

! KB |= ∃x.α iff KB |= α[x/c], for some c ∈ KB+

! KB |= (α ∨ β) iff KB |= α or KB |= β
! KB |= ¬α iff KB |≠ α
! KB |= (c = d) iff c and d are the same constant
! KB |= p iff p ∈ KB+

This is just database retrieval
! useful to store KB+ as a collection of relations

Note: only KB+ is needed to answer queries, but
Negs, Dc, and Un are required to justify procedure

! KB and KB+ are not logically equivalent
! !e.g. KB+ |= λ only if λ is positive

So: could generalize definition to have arbitrary
sentences that entail Negs, Dc, and Un

KR & R! © Brachman & Levesque 2005 Tradeoff

Analogues

Can think of a vivid KB as an analogue of the
world it is talking about

! there is a 1-1 correspondence between
– objects in the world and constants in the KB+

– relationships in the world and syntactic
relationships in the KB+

! for example, if constants c1 and c2 stand for objects in
the world o1 and o2

! there is a relationship R holding between objects
o1 and o2 in the world

! !! iff
! the constants c1 and c2 appear together as a

tuple in the relation represented by R

Not true in general
! for example, if KB = {P(a)} then it only uses 1

constant, but could be talking about a world where
there are 5 individuals of which 4 satisfy P

Result: certain operations are easy
– how many objects satisfy P (by counting)
– changes to the world (by changes to KB+)

KR & R! © Brachman & Levesque 2005 Tradeoff

Beyond vivid
Requirement of vividness is very strict.

Would like to consider weaker alternatives
with good reasoning properties

Extension 1
Suppose KB is a finite set of literals

– not necessarily a complete set (no CWA)
– assume consistent, else trivial

Cannot reduce KB |= α to literal queries
! !for example, if KB = {p}

!! then KB |= (p∧q ∨ p∧¬q)
!! but KB |≠ p∧q and KB |≠ p∧¬q

But: assume α is small. Can put into CNF
! α ß (c1 ∧ ... ∧ cn)

• KB |= α iff KB |= ci, for every clause in CNF of α

• KB |= c iff c has complementary literals – tautology
!! ! or ! KB ∩ c is not empty
! !Why?

ignoring
quantifiers
again

KR & R! © Brachman & Levesque 2005 Tradeoff

Extension 2
Imagine KB vivid as before + new definitions:

! ∀xyz[R(x,y,z) ≡ ... wff in vivid language ...]
! Example: have vivid KB using predicate ParentOf
! add: ∀xy[MotherOf(x,y) ≡ ParentOf(x,y) ∧ Female(x)]

To answer query containing R(t1,t2,t3), simply macro
expand it with definition and continue

• can handle arbitrary logical operators in definition
since they become part of query, not KB

• can generalize to handle predicates not only in vivid
KB, provided that they bottom out to KB+

! !∀xy[AncestorOf(x,y) ≡ ParentOf(x,y) ∨
!! ! ∃z ParentOf(x,z) ∧ AncestorOf(z,y)]

• clear relation to Prolog

Others...
Vivification: given non-vivid KB, attempt to make vivid
e.g. by eliminating disjunctions etc.

! e.g. use defaults to choose between disjuncts
Problem: what to do with function symbols, when
Herbrand universe is not finite?

! partial Herbrand base?

KR & R! © Brachman & Levesque 2005 Tradeoff

Hybrid reasoning

Want to be able to incorporate into a single
system special-purpose efficient reasoners
How can they coexist within a general
scheme such as Resolution?

! a variety of approaches for hybrid reasoners

Simple form: semantic attachment
• attach procedures to functions and predicates

! e.g. numbers: procedures on plus, LessThan, ...
• ground terms and atomic sentences can be evaluated

prior to Resolution
! P(factorial(4), times(2,3)) ß P(24, 6)

LessThan(quotient(36,6), 5) ∨ α ß α
• much better than reasoning directly with axioms

More complex form: theory resolution
• build theory into unification process

! the way paramodulation builds in =
• extended notion of complementary literals

! {α, LessThan(2,x)} and {LessThan(x,1), β}
!! ! resolve to {α,β}

KR & R! © Brachman & Levesque 2005 Tradeoff

Using descriptions

Imagine that predicates are defined elsewhere as
concepts in a description logic

! Married ≡ (AND ...)!! ! Bachelor ≡ (AT-MOST ...)

then want
! {P(x), Married(x)} and {Bachelor(john), Q(y)}

! !to resolve to
! {P(john), Q(y)}

! since the other two literals are contradictory
for x=john, given DL definitions

Can use description logic procedure to decide if two
predicates are complementary

instead of explicit meaning postulates

Residues: for “almost” complementary literals
! {P(x), Male(x)} and {¬Bachelor(john), Q(y)}

! !resolve to
! {P(john), Q(y), Married(john)}

! since the two literals are contradictory
unless John is married

Main issue: completeness of theory resolution
• what resolvents are necessary to get the same

conclusions as if meaning postulates were used
• residues are necessary for completeness

