Limit expressive power?

Defaults, probabilities, etc. can all be thought of as extensions to FOL, with obvious applications

Why not strive for the union of all such extensions?
a language co-extensive with English?
Problem: automated reasoning
Lesson here:
reasoning procedures required for more expressive languages may not work very well in practice

Tradeoff: expressiveness vs. tractability
Overview:

- a Description Logic example
- limited languages
- the problem with cases
- vivid reasoning as an extreme case
- less vivid reasoning
- hybrid reasoning systems

KR \& R © Brachman \& Levesque 2005

Simple Description Logic

Consider the language FL defined by:

```
<concept> ::= atom
I (AND <concept> ... <concept>)
| (ALL <role> <concept>)
I (SOME <role>)
<role> ::= atom
    | (RESTR <role> <concept>)
```

Example:

- (ALL child (AND FEMALE STUDENT)) an individual whose children are female students
- (ALL (RESTR child FEMALE) STUDENT) an individual whose female children are students there may or may not be male children and they may or may not be students

Extension functions as before with
$\Phi[(\operatorname{RESTR} r c)]=$
$\{(x, y) \mid(x, y) \in \Phi[r]$ and $y \in \Phi[c]\}$
Subsumption defined as usual

Computing subsumption

First for $\mathrm{FL}^{-}=\mathrm{FL}$ without the RESTR operator

- put the concepts into normalized form

```
(AND p}\mp@subsup{p}{1}{\ldots}\mp@subsup{p}{k}{
(SOME r}\mp@subsup{r}{1}{\prime})\ldots(\operatorname{SOME r}\mp@subsup{r}{m}{\prime}
(ALL s}\mp@subsup{s}{1}{}\mp@subsup{c}{1}{\prime})\ldots(\operatorname{ALL }\mp@subsup{s}{n}{}\mp@subsup{c}{n}{\prime})
```

- to see if C subsumes D make sure that

1. for every $p \in C, \quad p \in D$
2. for every (SOME r) $\in C$, (SOME r) $\in D$
3. for every (ALL $s c) \in C$, find an (ALL $s d$) $\in D$ such that c subsumes d.

Can prove that this method is sound and complete relative to definition based on extension functions

Running time:

- normalization is $O\left(n^{2}\right)$
- structural matching:
for each part of C, find a part of D : again $O\left(n^{2}\right)$

What about all of FL, including RESTR?

KR \& R © Brachman \& Levesque 2005
Tradeoff

Subsumption in FL

Not so easy:

- cannot settle for part-by-part matching
(ALL (RESTR friend (AND MALE DOCTOR)) (AND TALL RICH)) subsumes
(AND (ALL (RESTR friend MALE)
(AND TALL HAPPY))
(ALL (RESTR friend DOCTOR)
(AND RICH SURGEON)))
- complex interactions
(SOME (RESTR r (AND $a b)$))
subsumes
(AND (SOME (RESTR r (AND $c d)$))
(ALL (RESTR $r c$) (AND $a e)$)
(ALL (RESTR r (AND $d e)) b$))
In general: can prove that FL is powerful enough to encode all of propositional logic
there is a mapping Ω from CNF wffs to FL where
$I=(\alpha \supset \beta)$ iff $\Omega[\alpha]$ is subsumed by $\Omega[\beta]$
but $\mid=(\alpha \supset(p \wedge \neg p))$ iff α is unsatisfiable
Conclusion: there is no good algorithm for FL

Moral

Even small doses of expressive power come at a computational price

Questions:

- what properties of a representation language control its difficulty?
- how far can expressiveness be pushed without losing good algorithms
- when is easy reasoning adequate for KR purposes?

These questions remain unanswered, but some progress has been made

- need for case analyses is a major factor
- tradeoff for DL languages is reasonably well understood
- best addressed (perhaps) by looking at working systems

Approach:

- find reasoning tasks that are tractable
- analyze difficulty in extending them

Limited languages

Some reasoning problems that can be formulated in terms of FOL entailment

$$
\mathrm{KB} \stackrel{?}{=} \alpha
$$

admit very specialized methods because of the restricted form of either KB or α
although problem could be solved using full resolution theorem proving, there is no need

Example 1: Horn clauses

- SLD resolution provides more focussed search
- in propositional case, a linear procedure is available

Example 2: Description logics

- Can do DL subsumption using Resolution

Introduce predicate symbols for concepts, and "meaning postulates" like
$\forall x[P(x) \equiv \forall y($ Friend $(x, y) \supset \operatorname{Rich}(y))$
$\wedge \forall y(\operatorname{Child}(x, y) \supset$
$\forall z(\operatorname{Friend}(y, z) \supset \operatorname{Happy}(z)))]$
for (AND (ALL friend RICH)
(ALL child (ALL friend HAPPY)))
Then ask if $\mathrm{MP} \mid=\forall x[P(x) \supset Q(x)]$

Equations

Example 3: linear equations

Let E be the usual axioms for arithmetic

$\forall x \forall y(x+y=y+x), \quad \forall x(x+0=x), \ldots$
Then have the following:
$E \mid=(x+2 y=4 \wedge x-y=1) \supset(x=2 \wedge y=1)$

Can "solve" linear equations using Resolution

But there is a much better way:
Gauss-Jordan method with back substitution

- subtract (2) from (1): $3 y=3$
- divide by 3: $y=1$
- substitute in (1): $x=2$

In general, a set of linear equations can be solved in $O\left(n^{3}\right)$ operations
This idea obviously generalizes!
always advantageous to use a specialized procedure when it is available, rather than a general method like Resolution

When is reasoning hard?

Suppose that instead of a set of linear equations, we have something like

$$
(x+2 y=4 \vee 3 x-y=7) \wedge x-y=1
$$

Can still show using Resolution: $y>0$
To use GJ method, we need to split cases:

$$
\begin{aligned}
& x+2 y=4 \wedge x-y=1 \quad \text { ß } y=1 \quad \therefore y>0 \\
& 3 x-y=7 \wedge x-y=1 \text { ß } y=2
\end{aligned}
$$

What if 2 disjunctions?

$$
\left(e q n A_{1} \vee e q n B_{1}\right) \wedge\left(e q n A_{2} \vee e q n B_{2}\right)
$$

there are four cases to consider with GJ method
What if n binary disjunctions?

$$
\left(e q n A_{1} \vee e q n B_{1}\right) \wedge \ldots \wedge\left(e q n A_{n} \vee e q n B_{n}\right)
$$

there are 2^{n} cases to consider with GJ method
with $n=30$, would need to solve 10^{9}
systems of equations!
Conclusion: even assuming a very efficient method, case analysis is still a big problem

Question: can we avoid case analyses??

Expressiveness of FOL

Ability to represent incomplete knowledge
$P(a) \vee P(b)$
$\exists x P(x)$
and even

$$
c \neq 3 \quad c=1 \vee c=2 \vee c=4 \vee \ldots
$$

Reasoning with facts like these requires somehow "covering" all the implicit cases
languages that admit efficient reasoning do not allow this type of knowledge to be represented
e.g. Horn clauses, description logics, linear equations, ...

One way to ensure tractability:
somehow restrict contents of KB so that reasoning by cases is not required

But is complete knowledge enough for tractability?
suppose $\mathrm{KB} \mid=\alpha$ or $\mathrm{KB} \mid=\neg \alpha$, as in the CWA
Get: queries reduce to $K B \mid=\lambda$, literals
But: it can still be hard to answer for literals
example: KB $=\{(p \vee q),(\neg p \vee q),(\neg p \vee \neg q)\}$
Have: $\mathrm{KB} \mid=\neg p \wedge q \quad$ complete
even literals may require case analysis

Vivid knowledge

Note: If KB is complete and consistent, then it is satisfied by a unique interpretation I

$$
\begin{aligned}
& \text { Why? define } \boldsymbol{I} \text { by } \boldsymbol{I} \mid=p \text { iff } \mathrm{KB} \left\lvert\,=p \quad \begin{array}{c}
\text { ignoring } \\
\text { quantifiers }
\end{array}\right. \\
& \text { Then for any } \boldsymbol{I}^{\star}, \text { if } \boldsymbol{I}^{\star} \mid=\mathrm{KB} \text { then } \boldsymbol{I}^{\star} \text { agrees withor now } \\
& \boldsymbol{I} \begin{array}{ll}
\text { on all atomic sentences } p
\end{array}
\end{aligned}
$$

Get: KB |= α iff $I \mid=\alpha$
entailments of KB are sentences that are true at I explains why queries reduce to atomic case $(\alpha \vee \beta)$ is true iff α is true or β is true, etc.
if we have the I, we can easily determine what is or is not entailed

Problem: KB can be complete and consistent, but unique interpretation may be hard to find as in the type of example on the previous slide
want a KB that wears this unique interpretation on its sleeve

Solution: a KB is vivid if it is a complete and consistent set of literals (for some language)

$$
\text { e.g. } \mathrm{KB}=\{\neg p, q\} \quad \text { specifies } \boldsymbol{I} \text { directly }
$$

To answer queries need only use KB^{+}, the positive literals in KB, as in the CWA

Quantifiers

As with the CWA, we can generalize the notion of vivid to accommodate queries with quantifiers

A first-order KB is vivid iff for some finite set of positive function-free ground literals KB+,

$$
\mathrm{KB}=\mathrm{KB}+\cup N e g s \cup D c \cup U n
$$

Get a simple recursive algorithm for $\mathrm{KB} \mid=\alpha$:
$\mathrm{KB} \mid=\exists x . \alpha$ iff $\quad \mathrm{KB} \mid=\alpha[x / c]$, for some $c \in \mathrm{~KB}^{+}$
$\mathrm{KB} \mid=(\alpha \vee \beta)$ iff $\quad \mathrm{KB} \mid=\alpha$ or $\mathrm{KB} \mid=\beta$
$\mathrm{KB} \mid=\neg \alpha$ iff $\mathrm{KB} \mid \neq \alpha$
$\mathrm{KB} \mid=(c=d)$ iff $\quad c$ and d are the same constant
$\mathrm{KB} \mid=p \quad$ iff $\quad p \in \mathrm{~KB}^{+}$

This is just database retrieval
useful to store $\mathrm{KB}+$ as a collection of relations

Note: only KB+is needed to answer queries, but
Negs, Dc, and Un are required to justify procedure
$K B$ and $K B+$ are not logically equivalent
e.g. $\mathrm{KB}^{+} \mid=\lambda$ only if λ is positive

So: could generalize definition to have arbitrary sentences that entail Negs, Dc, and Un

Analogues

Can think of a vivid KB as an analogue of the world it is talking about

there is a 1-1 correspondence between

- objects in the world and constants in the KB ${ }^{+}$
- relationships in the world and syntactic relationships in the KB ${ }^{+}$
for example, if constants c_{1} and c_{2} stand for objects in the world o_{1} and o_{2}
there is a relationship R holding between objects o_{1} and o_{2} in the world
iff
the constants c_{1} and c_{2} appear together as a tuple in the relation represented by R

Not true in general

for example, if $\mathrm{KB}=\{P(a)\}$ then it only uses 1 constant, but could be talking about a world where there are 5 individuals of which 4 satisfy P

Result: certain operations are easy

- how many objects satisfy P (by counting)
- changes to the world (by changes to KB+

Beyond vivid

Requirement of vividness is very strict.
Would like to consider weaker alternatives with good reasoning properties

Extension 1

Suppose KB is a finite set of literals

- not necessarily a complete set (no CWA)
- assume consistent, else trivial

Cannot reduce $\mathrm{KB} \mid=\alpha$ to literal queries

for example, if $\mathrm{KB}=\{p\}$
then KB $\mid=(p \wedge q \vee p \wedge \neg q)$
but $\mathrm{KB} \mid \neq p \wedge q$ and $\mathrm{KB} \mid \neq p \wedge \neg q$
But: assume α is small. Can put into CNF
$\alpha \beta\left(c_{1} \wedge \ldots \wedge c_{\mathrm{n}}\right)$

- $\mathrm{KB} \mid=\alpha$ iff $\mathrm{KB} \mid=c_{i}$, for every clause in CNF of α
- KB $\mid=c$ iff c has complementary literals - tautology or $\mathrm{KB} \cap c$ is not empty
Why?

Extension 2

Imagine KB vivid as before + new definitions:
$\forall x y z[R(x, y, z) \equiv \ldots$ wff in vivid language ...]
Example: have vivid KB using predicate ParentOf add: $\forall x y[\operatorname{MotherOf}(x, y) \equiv \operatorname{ParentOf}(x, y) \wedge \operatorname{Female}(x)]$

To answer query containing $R\left(t_{1}, t_{2}, t_{3}\right)$, simply macro expand it with definition and continue

- can handle arbitrary logical operators in definition since they become part of query, not KB
- can generalize to handle predicates not only in vivid KB , provided that they bottom out to KB^{+}
$\forall x y[\operatorname{AncestorOf}(x, y) \equiv \operatorname{ParentOf}(x, y) \vee$
$\exists z$ ParentOf $(x, z) \wedge$ AncestorOf $(z, y)]$
- clear relation to Prolog

Others...

Vivification: given non-vivid KB, attempt to make vivid e.g. by eliminating disjunctions etc.
e.g. use defaults to choose between disjuncts

Problem: what to do with function symbols, when Herbrand universe is not finite?
partial Herbrand base?

Hybrid reasoning

Want to be able to incorporate into a single system special-purpose efficient reasoners

How can they coexist within a general scheme such as Resolution?
a variety of approaches for hybrid reasoners

Simple form: semantic attachment

- attach procedures to functions and predicates e.g. numbers: procedures on plus, LessThan, ...
- ground terms and atomic sentences can be evaluated prior to Resolution
$P($ factorial(4), times(2,3)) ß $P(24,6)$
LessThan(quotient $(36,6), 5) \vee \alpha \beta \quad \alpha$
- much better than reasoning directly with axioms

More complex form: theory resolution

- build theory into unification process
the way paramodulation builds in =
- extended notion of complementary literals
$\{\alpha, \operatorname{LessThan}(2, x)\}$ and $\{\operatorname{LessThan}(x, 1), \beta\}$ resolve to $\{\alpha, \beta\}$

Using descriptions

Imagine that predicates are defined elsewhere as concepts in a description logic

Married $\equiv($ AND \ldots..) Bachelor $\equiv($ AT-MOST \ldots)
then want
$\{P(x), \operatorname{Married}(x)\}$ and $\{\operatorname{Bachelor}(j o h n), Q(y)\}$ to resolve to
$\{P($ john $), Q(y)\}$
since the other two literals are contradictory for $x=$ john, given DL definitions

Can use description logic procedure to decide if two predicates are complementary
instead of explicit meaning postulates
Residues: for "almost" complementary literals
$\{P(x), \operatorname{Male}(x)\}$ and $\{\neg$ Bachelor(john), $Q(y)\}$
resolve to
$\{P($ john $), Q(y)$, Married(john) $\}$
since the two literals are contradictory unless John is married

Main issue: completeness of theory resolution

- what resolvents are necessary to get the same conclusions as if meaning postulates were used
- residues are necessary for completeness

