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Limit expressive power?

Defaults, probabilities, etc. can all be thought 
of as extensions to FOL,  with obvious 
applications
Why not strive for the union of all such 
extensions?

! a language co-extensive with English?

Problem:  automated reasoning
Lesson here:  

! reasoning procedures required for more expressive 
languages may not work very well in practice

Tradeoff:  expressiveness vs. tractability
Overview:

– a Description Logic example
– limited languages
– the problem with cases
– vivid reasoning as an extreme case
– less vivid reasoning
– hybrid reasoning systems
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Simple Description Logic

Consider the language FL defined by:
! <concept> ::= atom 

! !| (AND <concept> ... <concept>)
! !| (ALL <role> <concept>)
! !| (SOME <role>)

!
! <role>  ::=  atom
! ! | (RESTR <role> <concept>)

Example:
• (ALL child  (AND FEMALE STUDENT))

an individual whose children are female students
• (ALL (RESTR child  FEMALE) STUDENT)

an individual whose female children are students 
! there may or may not be male children and they may or 

may not be students

Extension functions as before with
! Φ[(RESTR r c)]  =
!{ (x,y)  |  (x,y) ∈ Φ[r]   and  y ∈ Φ[c] }

Subsumption defined as usual
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Computing subsumption

First for FL¯ = FL without the RESTR operator
• put the concepts into normalized form

! (AND p1 ... pk

!(SOME r1) ... (SOME rm)
!(ALL s1 c1) ... (ALL sn cn) )

• to see if C subsumes D  make sure that
1.!for every p ∈ C,   p ∈ D

2.!for every (SOME r) ∈ C, (SOME r) ∈ D
3.!for every (ALL s c) ∈ C,  find an (ALL s d) ∈ D 

such that c subsumes d.

Can prove that this method is sound and 
complete relative to definition based on 
extension functions 
Running time:

• normalization is O(n2) 
• structural matching:

! for each part of C,  find a part of D:
! !again O(n2)

What about all of FL,  including RESTR?
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Subsumption in FL

Not so easy:
• cannot settle for part-by-part matching

!     (ALL (RESTR friend  (AND MALE DOCTOR))
!! ! (AND TALL RICH))

! !subsumes
!     (AND! (ALL (RESTR friend MALE)!
!! ! ! (AND TALL HAPPY)) !
!! (ALL (RESTR friend DOCTOR)
!! ! ! (AND RICH SURGEON)))

• complex interactions
!     (SOME (RESTR r  (AND a b)))

! !subsumes
!     (AND ! (SOME (RESTR r  (AND c d)))
!! (ALL (RESTR r  c)  (AND a e))
!! (ALL (RESTR r (AND d e))  b))

In general:  can prove that FL is powerful enough to 
encode all of propositional logic

! there is a mapping Ω from CNF wffs to FL where
|= (α ⊃ β)   iff   Ω[α]  is subsumed by Ω[β]

! but  |= (α ⊃ (p∧¬p))   iff   α is unsatisfiable

Conclusion: there is no good algorithm for FL
! !! unless P=NP
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Moral

Even small doses of expressive power come 
at a computational price
Questions:

• what properties of a representation language control 
its difficulty?

• how far can expressiveness be pushed without losing 
good algorithms

• when is easy reasoning adequate for KR purposes?

These questions remain unanswered, but 
some progress has been made

• need for case analyses is a major factor
• tradeoff for DL languages is reasonably well 

understood
• best addressed (perhaps) by looking at working 

systems

Approach:
• find reasoning tasks that are tractable
• analyze difficulty in extending them
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Limited languages

Some reasoning problems that can be formulated in 
terms of FOL entailment

KB  |=  α

admit very specialized methods because of the 
restricted form of either KB or α

! although problem could be solved using full 
resolution theorem proving, there is no need 

Example 1:  Horn clauses
• SLD resolution provides more focussed search
• in propositional case, a linear procedure is available

Example 2:  Description logics
• Can do DL subsumption using Resolution
! Introduce predicate symbols for concepts, and 
“meaning postulates”  like 

! !∀x[P(x)  ≡  ∀y(Friend(x,y) ⊃ Rich(y))
!! ! ∧ ∀y(Child(x,y) ⊃ 
!! ! ! ! ∀z(Friend(y,z) ⊃ Happy(z)))]

! for  !     (AND !(ALL friend RICH) 
!! ! (ALL child (ALL friend HAPPY)))

! Then ask if   MP |= ∀x[P(x) ⊃ Q(x)]

?
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Equations

Example 3: linear equations
Let E be the usual axioms for arithmetic

! ∀x∀y(x+y = y+x),  ∀x(x+0 = x), ...

Then have the following:
! E  |=  (x+2y=4 ∧  x–y=1)  ⊃  (x=2 ∧ y=1)

Can “solve” linear equations using Resolution

But there is a much better way: 
! Gauss-Jordan method with back substitution

– subtract (2) from (1):  3y = 3
– divide by 3:  y = 1
– substitute in (1):  x = 2

In general, a set of linear equations can be 
solved in O(n3) operations
This idea obviously generalizes!

! always advantageous to use a specialized procedure 
when it is available, rather than a general method like 
Resolution

Peano
axioms
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When is reasoning hard?

Suppose that instead of a set of linear equations, we 
have something like

! (x+2y=4  ∨  3x–y=7)  ∧  x–y=1

Can still show using Resolution:  y > 0

To use GJ method, we need to split cases:
! x+2y=4 ∧  x–y=1  ß  y=1

! 3x–y=7 ∧  x–y=1  ß  y=2

What if 2 disjunctions?
! (eqnA1 ∨ eqnB1)  ∧  (eqnA2 ∨ eqnB2)

! there are four cases to consider with GJ method

What if n binary disjunctions?
! (eqnA1 ∨ eqnB1)  ∧ ...  ∧  (eqnAn ∨ eqnBn) 

! there are 2n cases to consider with GJ method
! !with n=30, would need to solve 109 
!systems of equations!

Conclusion:  even assuming a very efficient method, 
case analysis is still a big problem

Question: can we avoid case analyses??

∴  y > 0
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Expressiveness of FOL

Ability to represent incomplete knowledge 
! P(a) ∨ P(b)! ! ! but which?
! ∃x P(x)! ! ! ! P(a) ∨ P(b) ∨ P(c) ∨ ...

! !and  even 
! c ≠  3! ! ! ! c=1 ∨ c=2 ∨ c=4 ∨ ...

Reasoning with facts like these requires somehow 
“covering” all the implicit cases

! languages that admit efficient reasoning do not allow 
this type of knowledge to be represented

e.g.  Horn clauses, description logics, linear equations, ... 

One way to ensure tractability:
! somehow restrict contents of KB so that reasoning by 

cases is not required

But is complete knowledge enough for tractability?
! suppose  KB |= α  or  KB |= ¬α,  as in the CWA

! Get: queries reduce to  KB |= λ,  literals
! But:  it can still be hard to answer for literals

! example:  KB = {(p ∨ q), (¬p ∨ q), (¬p ∨ ¬q)}

! Have:  KB |= ¬p ∧ q! ! complete
! !even literals may require case analysis
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Vivid knowledge
Note: If KB is complete and consistent, then it is 
satisfied by a unique interpretation I

! Why?    define  I  by   I |= p   iff  KB |= p
! Then for any I*,   if  I* |= KB  then I* agrees with 

I! ! ! ! !     on all atomic sentences p

Get:  KB |= α  iff  I |= α
! entailments of KB are sentences that are true at I
! explains why queries reduce to atomic case

! (α ∨ β)  is true  iff α is true or β is true, etc.
! if we have the I, we can easily determine 

what is or is not entailed

Problem:  KB can be complete and consistent, but 
unique interpretation may be hard to find

as in the type of example on the previous slide

! want a KB that wears this unique interpretation 
on its sleeve

Solution:  a KB is vivid if it is a complete and 
consistent set of literals (for some language)

! e.g.  KB = {¬p, q}  ! specifies I directly

To answer queries need only use KB+, the positive 
literals in KB, as in the CWA!

ignoring
quantifiers
for now
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Quantifiers
As with the CWA, we can generalize the notion of vivid 
to accommodate queries with quantifiers

A first-order KB is vivid iff for some finite set of positive 
function-free ground literals KB+, 

! KB  =  KB+  ∪  Negs  ∪  Dc  ∪  Un

Get a simple recursive algorithm for KB |= α:

! KB |= ∃x.α   iff   KB |= α[x/c],   for some c ∈ KB+

! KB |= (α ∨ β)   iff   KB |= α  or  KB |= β
! KB |= ¬α   iff   KB |≠ α
! KB |= (c = d)   iff   c and d are the same constant
! KB |= p   iff   p ∈ KB+

This is just database retrieval
! useful to store KB+ as a collection of relations

Note:  only KB+ is needed to answer queries, but 
Negs, Dc, and Un are required to justify procedure

! KB and KB+ are not logically equivalent
! !e.g.  KB+ |= λ  only if λ is positive

So: could generalize definition to have arbitrary 
sentences that entail Negs, Dc, and Un 
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Analogues

Can think of a vivid KB as an analogue of the 
world it is talking about

! there is a 1-1 correspondence between 
– objects in the world and constants in the KB+

– relationships in the world and syntactic 
relationships in the KB+

! for example, if constants c1 and c2 stand for objects in 
the world o1 and o2

! there is a relationship R holding between objects 
o1 and o2 in the world

! !! iff
! the constants c1 and c2 appear together as a 

tuple in the relation represented by R

Not true in general
! for example, if KB = {P(a)} then it only uses 1 

constant, but could be talking about a world where 
there are 5 individuals of which 4 satisfy P

Result:  certain operations are easy
– how many objects satisfy P (by counting)
– changes to the world (by changes to KB+)
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Beyond vivid
Requirement of vividness is very strict.

Would like to consider weaker alternatives 
with good reasoning properties

Extension 1
Suppose KB is a finite set of literals

– not necessarily a complete set  (no CWA)
– assume consistent, else trivial

Cannot reduce KB |= α  to literal queries
! !for example,  if KB = {p}

!! then KB |= (p∧q  ∨  p∧¬q)
!! but   KB |≠ p∧q  and  KB |≠ p∧¬q

But:  assume α is small.  Can put into CNF
! α  ß  (c1 ∧ ... ∧ cn)

• KB |= α  iff   KB |= ci,  for every clause in CNF of α

• KB |= c   iff  c has complementary literals   – tautology
!! ! or  ! KB ∩ c  is  not empty
! !Why?

ignoring
quantifiers
again
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Extension 2
Imagine KB vivid as before + new definitions:

! ∀xyz[R(x,y,z) ≡  ... wff in vivid language ...]
! Example:  have vivid KB using predicate ParentOf
! add: ∀xy[MotherOf(x,y) ≡ ParentOf(x,y) ∧ Female(x)]

To answer query containing R(t1,t2,t3), simply macro 
expand it with definition and continue

• can handle arbitrary logical operators in definition 
since they become part of query, not KB

• can generalize to handle predicates not only in vivid 
KB, provided that they bottom out to KB+

! !∀xy[AncestorOf(x,y) ≡ ParentOf(x,y)  ∨ 
!! ! ∃z ParentOf(x,z) ∧ AncestorOf(z,y)]

• clear relation to Prolog

Others... 
Vivification:  given non-vivid KB, attempt to make vivid 
e.g. by eliminating disjunctions etc. 

! e.g.  use defaults to choose between disjuncts
Problem:  what to do with function symbols, when 
Herbrand universe is not finite?

! partial Herbrand base?
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Hybrid reasoning

Want to be able to incorporate into a single 
system special-purpose efficient reasoners
How can they coexist within a general 
scheme such as Resolution?

! a variety of approaches  for hybrid reasoners

Simple form: semantic attachment
• attach procedures to functions and predicates

! e.g.  numbers: procedures on plus, LessThan, ...
• ground terms and atomic sentences can be evaluated  

prior to Resolution
! P(factorial(4), times(2,3))   ß   P(24, 6)

LessThan(quotient(36,6), 5) ∨ α    ß    α
• much better than reasoning directly with axioms

More complex form:  theory resolution
• build theory into unification process

! the way paramodulation builds in =
• extended notion of complementary literals

! {α, LessThan(2,x)}  and  {LessThan(x,1), β}  
!! ! resolve to  {α,β}
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Using descriptions

Imagine that predicates are defined elsewhere as 
concepts in a description logic

! Married  ≡  (AND ...)!! ! Bachelor   ≡  (AT-MOST ...)

then want
! {P(x), Married(x)}  and  {Bachelor(john), Q(y)}

! !to resolve to 
! {P(john), Q(y)}

! since the other two literals are contradictory 
for x=john, given DL definitions

Can use description logic procedure to decide if two 
predicates are complementary

instead of explicit meaning postulates

Residues:  for “almost” complementary literals
! {P(x), Male(x)}  and  {¬Bachelor(john), Q(y)}

! !resolve to
! {P(john), Q(y), Married(john)} 

! since the two literals are contradictory 
unless John is married

Main issue:  completeness of theory resolution
• what resolvents are necessary to get the same 

conclusions as if meaning postulates were used
• residues are necessary for completeness


