Limit expressive power?

Defaults, probabilities, *etc.* can all be thought of as extensions to FOL, with obvious applications

Why not strive for the *union* of all such extensions?

a language co-extensive with English?

Problem: automated reasoning

Lesson here:

reasoning procedures required for more expressive languages may not work very well in practice

Tradeoff: expressiveness vs. tractability

Overview:

- a Description Logic example
- limited languages
- the problem with cases
- vivid reasoning as an extreme case
- less vivid reasoning
- hybrid reasoning systems

KR & R © Brachman & Levesque 2005

evesque 2005

Tradeoff

Computing subsumption

Tradeoff

Tradeoff

KR & R © Brachman & Levesque 2005

KR & R © Brachman & Levesque 2005

Subsumption in FL		
Not so easy:		
 cannot settle for part-by-part matching 		
(ALL (RESTR friend (AND MALE DOCTOR)) (AND TALL RICH))		
subsumes		
(AND (ALL (RESTR friend MALE) (AND TALL HAPPY)) (ALL (RESTR friend DOCTOR) (AND RICH SURGEON)))		
complex interactions		
(SOME (RESTR r (AND $a b$)))		
subsumes		
(AND (SOME (RESTR r (AND c d))) (ALL (RESTR r c) (AND a e)) (ALL (RESTR r (AND d e)) b))		
In general: can prove that FL is powerful enough to encode <i>all</i> of propositional logic		
there is a mapping Ω from CNF wffs to FL where		
= (α ⊃β) iff Ω[α] is subsumed by Ω[β]		
but $\models (\alpha \supset (p \land \neg p))$ iff α is unsatisfiable		
Conclusion: there is no good algorithm for FL		

Moral

Even small doses of expressive power come at a computational price

Questions:

- what properties of a representation language control its difficulty?
- how far can expressiveness be pushed without losing good algorithms
- · when is easy reasoning adequate for KR purposes?

These questions remain unanswered, but some progress has been made

- · need for case analyses is a major factor
- tradeoff for DL languages is reasonably well understood
- best addressed (perhaps) by looking at working systems

Tradeoff

Approach:

- find reasoning tasks that are tractable
- analyze difficulty in extending them

KR & R © Brachman & Levesque 2005

Limited languages Some reasoning problems that can be formulated in terms of FOL entailment KB $\stackrel{?}{\models} \alpha$ admit very specialized methods because of the restricted form of either KB or α although problem could be solved using full resolution theorem proving, there is no need Example 1: Horn clauses · SLD resolution provides more focussed search • in propositional case, a linear procedure is available Example 2: Description logics · Can do DL subsumption using Resolution Introduce predicate symbols for concepts, and "meaning postulates" like $\forall x [P(x) \equiv \forall y (Friend(x,y) \supset Rich(y))$ $\wedge \forall y(\operatorname{Child}(x,y) \supset$ $\forall z(\text{Friend}(y,z) \supset \text{Happy}(z)))]$ for (AND (ALL friend RICH) (ALL child (ALL friend HAPPY))) Then ask if MP $\models \forall x [P(x) \supset Q(x)]$

KR & R © Brachman & Levesque 2005 Tradeoff

Equations

Example 3: linear equations Let *E* be the usual axioms for arithmetic $\forall x \forall y(x+y=y+x), \ \forall x(x+0=x), \dots$ Then have the following:

Peano axioms

Tradeoff

 $E \models (x+2y=4 \land x-y=1) \supset (x=2 \land y=1)$

Can "solve" linear equations using Resolution

But there is a much better way:

Gauss-Jordan method with back substitution

- subtract (2) from (1): 3y = 3
- divide by 3: y = 1
- substitute in (1): x = 2

In general, a set of linear equations can be solved in $O(n^3)$ operations

This idea obviously generalizes!

always advantageous to use a specialized procedure when it is available, rather than a general method like Resolution

KR & R © Brachman & Levesque 2005

When is reasoning hard? Suppose that instead of a set of linear equations, we have something like $(x+2y=4 \lor 3x-y=7) \land x-y=1$ Can still show using Resolution: y > 0To use GJ method, we need to split cases: $x+2y=4 \land x-y=1$ ß y=1 $\therefore y > 0$ $3x-y=7 \land x-y=1$ ß y=2What if 2 disjunctions? $(eqnA_1 \lor eqnB_1) \land (eqnA_2 \lor eqnB_2)$ there are four cases to consider with GJ method What if *n* binary disjunctions? $(eqnA_1 \lor eqnB_1) \land ... \land (eqnA_n \lor eqnB_n)$ there are 2ⁿ cases to consider with GJ method with n=30, would need to solve 10^9 systems of equations! Conclusion: even assuming a very efficient method, case analysis is still a *big* problem Question: can we avoid case analyses??

KR & R © Brachman & Levesque 2005

Expressiveness of FOL

Ability to represent incomplete knowledge				
$P(a) \lor P(b)$	but which?			
$\exists x P(x)$	$P(a) \lor P(b) \lor P(c) \lor \dots$			
and even				
$c \neq 3$	$c=1 \lor c=2 \lor c=4 \lor$			
Reasoning with facts like these requires somehow "covering" all the implicit cases				
languages that admit efficient reasoning do not allow this type of knowledge to be represented e.g. Horn clauses, description logics, linear equations,				
One way to ensure tra	actability:			
somehow restrict contents of KB so that reasoning by cases is not required				
But is complete knowledge enough for tractability?				
suppose KB = α or KB = $\neg \alpha$, as in the CWA				
Get: queries	reduce to KB $\models \lambda$, literals			
But: it can st	ill be hard to answer for literals			
example: KB = {	$(p \lor q), (\neg p \lor q), (\neg p \lor \neg q)\}$			
Have: KB =	$\neg p \land q$ complete			
even literals	may require case analysis			
KR&R © Brachman & Levesqu	e 2005 Tradeoff			

Vivid knowledge		
Note: If KB is complete and consistent, then it is satisfied by a <i>unique</i> interpretation <i>I</i>		
Why? define <i>I</i> by $I \models p$ iff KB $\models p$ ignoring guantifiers		
Then for any I^* , if $I^* \models KB$ then I^* agrees with $I^{\text{for now}}$ I on all atomic sentences p		
Get: KB $\mid = \alpha$ iff $I \mid = \alpha$		
entailments of KB are sentences that are true at I		
explains why queries reduce to atomic case		
$(\alpha \lor \beta)$ is true iff α is true or β is true, <i>etc.</i>		
if we have the <i>I</i> , we can easily determine what is or is not entailed		
Problem: KB can be complete and consistent, but unique interpretation may be hard to find as in the type of example on the previous slide		
want a KB that wears this unique interpretation on its sleeve		
Solution: a KB is <u>vivid</u> if it is a complete and consistent set of literals (for some language)		
e.g. $KB = \{\neg p, q\}$ specifies <i>I</i> directly		
To answer queries need only use KB+, the positive literals in KB, as in the CWA		
KR & R © Brachman & Levesque 2005 Tradeoff		

Quantifiers

As with the CWA, we can generalize t to accommodate queries with quantified	he notion of vivid ers		
A first-order KB is <u>vivid</u> iff for some finite set of positive function-free ground literals KB ⁺ ,			
$KB = KB^+ \cup \mathit{Negs} \cup \mathit{Dc} \cup \mathit{Un}$			
Get a simple recursive algorithm for KB $\models \alpha$:			
$KB \models \exists x.\alpha \text{ iff } KB \models \alpha[x/c], \text{ for some } c \in KB^+$			
$KB \models (\alpha \lor \beta) \text{ iff } KB \models \alpha \text{ or } KB \models \beta$			
$KB \models \neg \alpha \text{ iff } KB \not\models \alpha$			
$KB \models (c = d) \text{ iff } c \text{ and } d \text{ are the sar}$	me constant		
$KB \models p iff p \in KB^+$			
This is just database retrieval			
useful to store KB+as a collecti	ion of relations		
Note: only KB+is needed to answer queries, but <i>Negs, Dc,</i> and <i>Un</i> are required to <i>justify</i> procedure			
KB and KB+are not logically equivalent			
e.g. KB+ $\models \lambda$ only if λ is positive			
So: could generalize definition to have sentences that entail <i>Negs, Dc,</i> and <i>U</i>	e arbitrary In		
KR & R © Brachman & Levesque 2005	Tradeoff		

Analogues			
Can think of a vivid KB as a world it is talking about	an analogue of the		
there is a 1-1 correspondence between			
 objects in the world and constants in the KB⁺ 			
 relationships in the world relationships in the KB+ 	and syntactic		
for example, if constants c_1 are the world o_1 and o_2	nd c_2 stand for objects in		
there is a relationship R h o_1 and o_2 in the world	nolding between objects		
iff			
the constants c_1 and c_2 at tuple in the relation repre	ppear together as a esented by <i>R</i>		
Not true in general			
for example, if KB = $\{P(a)\}$ then it only uses 1 constant, but could be talking about a world where there are 5 individuals of which 4 satisfy <i>P</i>			
Result: certain operations are easy			
 how many objects satisfy P (by counting) 			
 changes to the world (by 	changes to KB+)		
KR & R © Brachman & Levesque 2005	Tradeoff		

Hybrid reasoning

Want to be able to incorporate into a single system special-purpose efficient reasoners

How can they coexist within a general scheme such as Resolution?

a variety of approaches for hybrid reasoners

Simple form: semantic attachment

- attach procedures to functions and predicates
 - e.g. numbers: procedures on plus, LessThan, ...
- ground terms and atomic sentences can be *evaluated* prior to Resolution

 $P(\text{factorial}(4), \text{times}(2,3)) \quad \beta \quad P(24, 6)$ LessThan(quotient(36,6), 5) $\lor \alpha \quad \beta \quad \alpha$

· much better than reasoning directly with axioms

More complex form: theory resolution

- build theory into unification process
 - the way paramodulation builds in =
- extended notion of complementary literals
 - $\{\alpha, \text{LessThan}(2, x)\}$ and $\{\text{LessThan}(x, 1), \beta\}$

Tradeoff

resolve to $\{\alpha,\beta\}$

KR & R © Brachman & Levesque 2005

Using descriptions		
Imagine that predicates are defined elsewhere as concepts in a description logic		
Married = (AND) Bachelor = (AT-MOST)		
then want		
${P(x), Married(x)}$ and ${Bachelor(john), Q(y)}$ to resolve to ${P(john), Q(y)}$ since the other two literals are contradictory for <i>x</i> =john, <i>given DL definitions</i>		
Can use description logic procedure to decide if two predicates are complementary instead of explicit meaning postulates		
Residues: for "almost" complementary literals		
$\{P(x), Male(x)\}$ and $\{\neg Bachelor(john), Q(y)\}$		
resolve to		
$\{P(\text{john}), Q(y), \text{Married}(\text{john})\}$		
since the two literals are contradictory unless John is married		
Main issue: completeness of theory resolution		
 what resolvents are necessary to get the same conclusions as if meaning postulates were used 		
 residues are necessary for completeness 		
KR & R © Brachman & Levesque 2005 Tradeoff		