11. Kernel Lower Bounds

COMP6741: Parameterized and Exact Computation

Serge Gaspers1,2

1School of Computer Science and Engineering, UNSW Australia
2Optimisation Research Group, NICTA

Semester 2, 2015
Outline

1. Reminder

2. A kernel for **Hamiltonian Cycle**

3. A kernel for **Edge Clique Cover**

4. Compression

5. Kernel Lower Bounds

6. Further Reading
Outline

1 Reminder
2 A kernel for **Hamiltonian Cycle**
3 A kernel for **Edge Clique Cover**
4 Compression
5 Kernel Lower Bounds
6 Further Reading
Definition 1

A kernelization (kernel) for a parameterized problem Π is a polynomial time algorithm, which, for any instance I of Π with parameter k, produces an equivalent instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f. We refer to the function f as the size of the kernel.
Definition 2

A parameterized problem Π is **fixed-parameter tractable (FPT)** if there is an algorithm solving Π in time $f(k) \cdot \text{poly}(n)$, where n is the instance size, k is the parameter, poly is a polynomial function, and f is a computable function.

Theorem 3

Let Π be a decidable parameterized problem. Π has a kernelization \iff Π is FPT.
Outline

1. Reminder

2. A kernel for Hamiltonian Cycle

3. A kernel for Edge Clique Cover

4. Compression

5. Kernel Lower Bounds

6. Further Reading
A Hamiltonian cycle of G is a subgraph of G that is a cycle on $|V(G)|$ vertices.

vc-Hamiltonian Cycle

Input: A graph $G = (V, E)$.

Parameter: $k = vc(G)$, the size of a smallest vertex cover of G.

Question: Does G have a Hamiltonian cycle?

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?
Issue: We do not actually know a vertex cover of size k.
Obtain a vertex cover of size $\leq 2k$ by applying VERTEX COVER-kernelizations to $(G, 0), (G, 1), \ldots$ until the first instance where no trivial No-instance is returned.

If C is a vertex cover of size $\leq 2k$, then $I = V \setminus C$ is an independent set of size $\geq |V| - 2k$.

No two consecutive vertices in the Hamiltonian Cycle can be in I.

A kernel with $\leq 4k$ vertices can now be obtained with the following simplification rule.

(Too-large)

Compute a vertex cover C of size $\leq 2k$ in polynomial time. If $2|C| < |V|$, then return No.
Outline

1. Reminder

2. A kernel for Hamiltonian Cycle

3. A kernel for Edge Clique Cover

4. Compression

5. Kernel Lower Bounds

6. Further Reading
Definition 4

An edge clique cover of a graph $G = (V, E)$ is a set of cliques in G covering all its edges.

In other words, if $C \subseteq 2^V$ is an edge clique cover then each $S \in C$ is a clique in G and for each $\{u, v\} \in E$ there exists an $S \in C$ such that $u, v \in S$.

Example: $\{\{a, b, c\}, \{b, c, d, e\}\}$ is an edge clique cover for this graph.
Edge Clique Cover

Input: A graph $G = (V, E)$ and an integer k

Parameter: k

Question: Does G have an edge clique cover of size at most k?

The size of an edge clique cover C is the number of cliques contained in C and is denoted $|C|$.
Definition 4

A clique S in a graph G is a maximal clique if there is no other clique S' in G with $S \subset S'$.

Lemma 5

A graph G has an edge clique cover C of size at most k if and only if G has an edge clique cover C' of size at most k such that each $S \in C'$ is a maximal clique.

Proof sketch.

(\Rightarrow): Replace each clique $S \in C$ by a maximal clique S' with $S \subseteq S'$.

(\Leftarrow): Trivial, since C' is an edge clique cover of size at most k. \qed
Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?
The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex $v \in V$ with $d_G(v) = 0$, then set $G \leftarrow G - v$.

Lemma 6

(Isolated) is sound.

Proof sketch.

Since no edge is incident to v, a smallest edge clique cover for $G - v$ is a smallest edge clique cover for G, and vice-versa.
The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex \(v \in V \) with \(d_G(v) = 0 \), then set \(G \leftarrow G - v \).

Lemma 6

(Isolated) is sound.

Proof sketch.

Since no edge is incident to \(v \), a smallest edge clique cover for \(G - v \) is a smallest edge clique cover for \(G \), and vice-versa.

(Isolated-Edge)

If \(\exists uv \in E \) such that \(d_G(u) = d_G(v) = 1 \), then set \(G \leftarrow G - \{u,v\} \) and \(k \leftarrow k - 1 \).
Simplification rules for Edge Clique Cover III

(Twins)

If \(\exists u, v \in V, u \neq v\), such that \(N_G[u] = N_G[v]\), then set \(G \leftarrow G - v\).

Lemma 7

(Twins) is sound.
Simplification rules for **Edge Clique Cover** III

(Twins)

If $\exists u, v \in V, u \neq v$, such that $N_G[u] = N_G[v]$, then set $G \leftarrow G - v$.

Lemma 7

(Twins) is sound.

Proof.

We need to show that G has an edge clique cover of size at most k if and only if $G - v$ has an edge clique cover of size at most k.

(\Rightarrow): If C is an edge clique cover of G of size at most k, then $\{S \setminus \{v\} : S \in C\}$ is an edge clique cover of $G - v$ of size at most k.

(\Leftarrow): Let C' be an edge clique cover of $G - v$ of size at most k. Partition C into $C_u = \{S \in C : u \in S\}$ and $C_{\neg u} = C \setminus C_u$. Note that each set in $C'_u = \{S \cup \{v\} : S \in C_u\}$ is a clique since $N_G[u] = N_G[v]$ and that each edge incident to v is contained in at least one of these cliques. Now, $C'_u \cup C_{\neg u}$ is an edge clique cover of G of size at most k.

\square
Simplification rules for Edge Clique Cover IV

\[(\text{Size-V})\]

If the previous simplification rules do not apply and \(|V| > 2^k\), then return No.

Lemma 8

\[(\text{Size-V}) \text{ is sound.}\]
(Size-V)

If the previous simplification rules do not apply and \(|V| > 2^k \), then return \textbf{No}.

Lemma 8

\textbf{(Size-V) is sound.}

Proof.

For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, \(|V| > 2^k \), and \(G \) has an edge clique cover \(C \) of size at most \(k \). Since \(2^C \) (the set of all subsets of \(C \)) has size at most \(2^k \), and every vertex belongs to at least one clique in \(C \) by (Isolated), we have that there exists two vertices \(u, v \in V \) such that \(\{ S \in C : u \in S \} = \{ S \in C : v \in S \} \). But then,
\[
N_G[u] = \bigcup_{S \in C : u \in S} S = \bigcup_{S \in C : v \in S} S = N_G[v],
\]
contradicting that (Twin) is not applicable. \(\square \)
Kernel for **Edge Clique Cover**

Theorem 9

Edge Clique Cover has a kernel with $O(2^k)$ vertices and $O(4^k)$ edges.

Corollary 10

Edge Clique Cover is FPT.
Possible issues designing simplification rules

Issue 1: A kernelization needs to produce an instance of the same problem.

How could we turn the following lemma into a simplification rule?

Lemma 11

If there is an edge \(\{u, v\} \in E \) such that \(S = N_G[u] \cap N_G[v] \) is a clique, then there is a smallest edge clique cover \(C \) with \(S \in C \).

Proof.

By Lemma 5, we may assume the clique covering the edge \(\{u, v\} \) is a maximal clique. But, \(S \) is the unique maximal clique covering \(\{u, v\} \).
Possible issues designing simplification rules

If there exists \(\{u, v\} \in E \) such that \(S = N_G[u] \cap N_G[v] \) is a clique, then ...???

Edges with both endpoints in \(S \setminus \{u, v\} \) are covered by \(S \) but might still be needed in other cliques.
We could design a kernelization for a more general problem.

Generalized Edge Clique Cover

Input: A graph $G = (V, E)$, a set of edges $R \subseteq E$, and an integer k

Parameter: k

Question: Is there a set C of at most k cliques in G such that each $e \in R$ is contained in at least one of these cliques?

(Neighborhood-Clique)

If there exists $\{u, v\} \in R$ such that $S = N_G[u] \cap N_G[v]$ is a clique, then set $G \leftarrow (V, E \setminus \{u, v\})$, $R \leftarrow R \setminus \{\{x, y\} : x, y \in S\}$, and $k \leftarrow k - 1$.
Issue 2: A proposed simplification rule might not be sound. Consider the following simplification rule for **Vertex Cover**.

\[
\text{(Optimistic-Degree-(} \geq k)\text{)}
\]

If \(\exists v \in V \) such that \(d_G(v) \geq k \), then set \(G \leftarrow G - v \) and \(k \leftarrow k - 1 \).

To show that a simplification rule is not sound, we exhibit a counter-example.

Lemma 11

\(\text{(Optimistic-Degree-(} \geq k)\text{)} \) is not sound for **Vertex Cover**.
Possible issues designing simplification rules

Lemma 11

(Optimistic-Degree-\((\geq k)\)) is not sound for Vertex Cover.

Proof.

Consider the instance consisting of the following graph and \(k = 3 \).

Since \(M = \{\{a_i, b_i\} : 1 \leq i \leq 3\} \) is a matching, a vertex cover contains at least one endpoint of each edge in \(M \). The rule would add \(c \) to the vertex cover, leading to a vertex cover of size at least 4. However, \(\{a_i : 1 \leq i \leq 3\} \) is a vertex cover of size 3.
Possible issues designing simplification rules

Issue 3: A problem might be **FPT**, but only an exponential kernel might be known / possible to achieve.
Outline

1. Reminder
2. A kernel for Hamiltonian Cycle
3. A kernel for Edge Clique Cover
4. Compression
5. Kernel Lower Bounds
6. Further Reading
Definition

Definition 11

A compression from a parameterized problem Π_1 to a problem Π_2 (the problem Π_2 is not necessarily parameterized) is a polynomial time algorithm, which, for any instance I_1 of Π_1 with parameter k_1, produces an equivalent instance I_2 of Π_2 such that $|I_2| \leq f(k_1)$ for a computable function f. We refer to the function f as the size of the compression.

Note: A kernelization is a compression where $\Pi_1 = \Pi_2$.
Compressions lead to Kernels

Theorem 12

Let \(\Pi_1 \) be an \(\text{NP} \)-hard parameterized problem and \(\Pi_2 \) be a problem in \(\text{NP} \). If \(\Pi_1 \) has a polynomial compression to \(\Pi_2 \), then \(\Pi_1 \) has a polynomial kernel.

Proof.

Denote by \(R \) a polynomial-time reduction from \(\Pi_2 \) to \(\Pi_1 \). Such a reduction exists by the definition of \(\text{NP} \)-hardness (a problem is \(\text{NP} \)-hard if every problem in \(\text{NP} \) can be reduced to it in polynomial time.)

Let \(I_1 \) be an instance for \(\Pi_1 \) with parameter \(k_1 \). Apply the polynomial compression to \(I_1 \) to obtain an equivalent instance \(I_2 \) for \(\Pi_2 \) such that \(|I_2| \in (k_1)^{O(1)} \). Now, \(|R(I_2)| \in (k_1)^{O(1)} \).
Outline

1. Reminder
2. A kernel for Hamiltonian Cycle
3. A kernel for Edge Clique Cover
4. Compression
5. Kernel Lower Bounds
6. Further Reading
For some \textsc{FPT} problems, only exponential kernels are known.
Could it be that all \textsc{FPT} problems have polynomial kernels?
We will see that polynomial kernels for some fixed-parameter tractable parameterized problems would contradict complexity-theoretic assumptions.
Intuition by example

Long Path

| Input: | A graph $G = (V, E)$, and an integer $k \leq |V|$. |
|--------------|---|
| Parameter: | k |
| Question: | Does G have a path of length at least k (as a subgraph)? |

Long Path is **NP-complete but FPT**.
Assume \textsc{Long Path} has a k^c kernel, where $c = O(1)$.

Set $q = k^c + 1$ and consider q instances with the same parameter k:

$$\left(G_1, k\right), \left(G_2, k\right), \ldots, \left(G_q, k\right).$$

Let $G = G_1 \oplus G_2 \oplus \cdots \oplus G_q$ be the disjoint union of all these graphs.

Note that (G, k) is a \textsc{Yes}-instance if and only if at least one of $(G_i, k), 1 \leq i \leq q$, is a \textsc{Yes}-instance.

Kernelizing (G, k) gives an instance of size k^c, i.e., on average less than one bit per original instance.

“The kernelization must have solved at least one of the original \textsc{NP}-hard instances in polynomial time”.
Distillation

Definition 13

Let Π_1, Π_2 be two problems. An **OR-distillation** (resp., **AND-distillation**) from Π_1 into Π_2 is a polynomial time algorithm D whose input is a sequence I_1, \ldots, I_q of instances for Π_1 and whose output is an instance I' for Π_2 such that

- $|I'| \leq \text{poly}(\max_{1 \leq i \leq q} |I_i|)$, and

- I' is a \textsf{YES}-instance for Π_2 if and only if for at least one (resp., for each) $i \in \{1, \ldots, q\}$ we have that I_i is a \textsf{YES}-instance for Π_1.

S. Gaspers (UNSW)
NP-complete problems don’t have distillations

Theorem 14 ([Fortnow, Santhanam, 2008])

If any NP-complete problem has an OR-distillation, then coNP ⊆ NP/poly. ¹

Note: coNP ⊆ NP/poly is not believed to be true and it would imply that the polynomial hierarchy collapses to the third level: PH ⊆ Σ₃ᵖ.

Theorem 15 ([Drucker, 2012])

If any NP-complete problem has an AND-distillation, then coNP ⊆ NP/poly.

¹NP/poly is the class of all decision problems for which there exists a polynomial-time nondeterministic Turing Machine M with the following property: for every n ≥ 0, there is an advice string A of length poly(n) such that, for every input I of length n, the machine M correctly decides the problem with input I, given I and A.
Definition 16

Let Π be a parameterized problem. An **OR-composition** (resp., **AND-composition**)
of Π is a polynomial time algorithm A that receives as input a finite sequence
I_1, \ldots, I_q of Π with parameters $k_1 = \cdots = k_q = k$ and outputs an instance I' for
Π with parameter k' such that

- $k' \leq \text{poly}(k)$, and
- I' is a **YES**-instance for Π if and only if for at least one (resp., for each)
 $i \in \{1, \ldots, q\}$, I_i is a **YES**-instance for Π.
Theorem 17 (Composition Theorem)

Let Π be an NP-complete parameterized problem such that for each instance I of Π with parameter k, the value of the parameter k can be computed in polynomial time and $k \leq |I|$. If Π has an OR-composition or an AND-composition, then Π has no polynomial kernel, unless $\text{coNP} \subseteq \text{NP}/\text{poly}$.
Theorem 17 (Composition Theorem)

Let Π be an NP-complete parameterized problem such that for each instance I of Π with parameter k, the value of the parameter k can be computed in polynomial time and $k \leq |I|$. If Π has an OR-composition or an AND-composition, then Π has no polynomial kernel, unless $\text{coNP} \subseteq \text{NP/poly}$.

Proof sketch.

Suppose Π has an OR/AND-composition and a polynomial kernel. Then, one can obtain an OR/AND-distillation from Π into OR(Π)/AND(Π).
Theorem 17 (Composition Theorem)

Let Π be an NP-complete parameterized problem such that for each instance I of Π with parameter k, the value of the parameter k can be computed in polynomial time and $k \leq |I|$. If Π has an OR-composition or an AND-composition, then Π has no polynomial kernel, unless $\text{coNP} \subseteq \text{NP}/\text{poly}$.

Proof sketch.

Suppose Π has an OR/AND-composition and a polynomial kernel. Then, one can obtain an OR/AND-distillation from Π into $\text{OR}(\Pi)/\text{AND}(\Pi)$.

I_1 I_2 ... I_q q instances of size $\leq n = \max_{1 \leq i \leq q} |I_i|$}

$\{I_i : k_i = 0\}$... $\{I_i : k_i = n\}$ group by parameter

I'_0 I'_1 ... I'_n After OR-composition: $n + 1$ instances with $k'_i \leq \text{poly}(n)$

I''_0 I''_1 ... I''_n After kernelization: $n + 1$ instances of size $\text{poly}(n)$ each

This is an instance of OR(Π) of size $\text{poly}(n)$.

□
Theorem 18

Long Path has no polynomial kernel unless \(\text{NP} \subseteq \text{coNP/poly} \).

Proof.

Clearly, \(k \) can be computed in polynomial time and \(k \leq |V| \).

We give an OR-composition for **Long Path**, which will prove the theorem by the previous lemma.

It receives as input a sequence of instances for **Long Path**: \((G_1, k), \ldots, (G_q, k)\), and it produces the instance \((G_1 \oplus \cdots \oplus G_q, k)\), which is a **YES**-instance if and only if at least one of \((G_1, k), \ldots, (G_q, k)\) is a **YES**-instance.
var-SAT has no poly kernel I

Input: A propositional formula F in conjunctive normal form (CNF)

Parameter: $n = |\text{var}(F)|$, the number of variables in F

Question: Is there an assignment to $\text{var}(F)$ satisfying all clauses of F?

Example:

$$(x_1 \lor x_2) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

or

$$\{\{x_1, x_2\}, \{-x_2, x_3, -x_4\}, \{x_1, x_4\}, \{-x_1, -x_3, -x_4\}\}$$
Theorem 19

var-SAT has no polynomial kernel unless $\text{NP} \subseteq \text{coNP/poly}$.

Proof.

Clearly, $\text{var}(F)$ can be computed in polynomial time and $n = |\text{var}(F)| \leq |F|$. We give an OR-composition for *var*-SAT, which will prove the theorem by the previous lemma.

- Let F_1, \ldots, F_q be CNF formulas, $|F_i| \leq m$, $|\text{var}(F_i)| = n$.
- We can decide whether one of the formulas is satisfiable in time $\text{poly}(mt2^n)$. Hence, if $q > 2^n$, the check is polynomial. If some formula is satisfiable, we output this formula, otherwise we output F_1.
Proof (continued).

- It remains the case $q \leq 2^n$. We assume $\text{var}(F_1) = \cdots = \text{var}(F_q)$, otherwise we change the names of variables.
- Let $s = \lceil \log_2 q \rceil$. Since $q \leq 2^n$, we have that $s \leq n$.
- We take a set $Y = \{y_1, \ldots, y_s\}$ of new variables. Let C_1, \ldots, C_{2^s} be the sequence of all 2^s possible clauses containing exactly s literals over the variables in Y.
- For $1 \leq i \leq q$ we let $F'_i = \{C \cup C_i : C \in F_i\}$.
- We define $F = \bigcup_{i=1}^q F'_i \cup \{C_i : q + 1 \leq i \leq 2^s\}$.
- Claim: F is satisfiable if and only if F_i is satisfiable for some $1 \leq i \leq q$.
- Hence we have an OR-composition.

□
Definition 20

Let Π_1, Π_2 be parameterized problems. A polynomial parameter transformation from Π_1 to Π_2 is a polynomial time algorithm, which, for any instance I_1 of Π_1 with parameter k_1, produces an equivalent instance I_2 of Π_2 with parameter k_2 such that $k_2 \leq \text{poly}(k_1)$.
Theorem 21

Let Π_1, Π_2 be parameterized problems such that Π_1 is NP-complete, Π_2 is in NP, and there is a polynomial parameter transformation from Π_1 to Π_2. If Π_2 has a polynomial kernel, then Π_1 has a polynomial kernel.

Remark: If we know that an NP-complete parameterized problem Π_1 has no polynomial kernel (unless $\text{NP} \subseteq \text{coNP/poly}$), we can use the theorem to show that some other NP-complete parameterized problem Π_2 has no polynomial kernel (unless $\text{NP} \subseteq \text{coNP/poly}$) by giving a polynomial parameter transformation from Π_1 to Π_2.
Proof.

- We show that under the assumptions of the theorem Π_1 has a polynomial kernel.
- Let I_1 be an instance of Π_1 with parameter k_1.
- We obtain in polynomial time an equivalent instance I_2 of Π_2 with parameter $k_2 \leq \text{poly}(k_1)$.
- We apply Π_2’s kernelization and obtain I'_2 of size $\leq \text{poly}(k_1)$.
- Since Π_2 is in NP and Π_1 is NP-complete, there exists a polynomial time reduction that maps I'_2 to an equivalent instance I'_1 of Π_1.
- The size of I'_1 is polynomial in k_1.

Definition 22
A CNF formula F is a 2CNF formula if each clause of F has at most 2 literals.

Note: SAT is polynomial time solvable when the input is restricted to be a 2CNF formula.

Definition 23
A 2CNF-backdoor of a CNF formula F is a set of variables $B \subseteq \text{var}(F)$ such that for each assignment $\alpha : B \rightarrow \{0, 1\}$, the formula $F[\alpha]$ is a 2CNF formula. Here, $F[\alpha]$ is obtained by removing all clauses containing a literal set to 1 by α, and removing the literals set to 0 from all remaining clauses.
2CNF-Backdoor Evaluation

Input: A CNF formula F and a 2CNF-backdoor B of F

Parameter: $k = |B|$

Question: Is F satisfiable?

Note: the problem is FPT by trying all assignments to B and evaluating the resulting formulas.
Theorem 24

2CNF-Backdoor Evaluation has no polynomial kernel unless $\text{NP} \subseteq \text{coNP/poly}$.

Proof.

We give a polynomial parameter transformation from var-SAT to **2CNF-Backdoor Evaluation**. Let F be an instance for var-SAT. Then, $(F, B = \text{var}(F))$ is an equivalent instance for **2CNF-Backdoor Evaluation** with $|B| \leq |\text{var}(F)|$.

☐
Exercise

Path Packing
Input: A graph G and an integer k
Parameter: k
Question: Are there k pairwise vertex-disjoint paths of length at least k each?

Show that Path Packing has no polynomial kernel unless $\text{NP} \subseteq \text{coNP/poly}$.

Hint: Compositions seem challenging.
Theorem 25

Path Packing has no polynomial kernel unless $\text{NP} \subseteq \text{coNP/poly}$.

Proof.

We give a polynomial parameter transformation from *Long Path* to *Path Packing*.

Given an instance (G, k) to *Long Path* we construct a graph G' from G by adding $k - 1$ vertex-disjoint paths of length k. Now, G contains a path of length k if and only if G' contains k vertex-disjoint paths of length k.

□
Outline

1 Reminder

2 A kernel for Hamiltonian Cycle

3 A kernel for Edge Clique Cover

4 Compression

5 Kernel Lower Bounds

6 Further Reading
Further Reading

