
COMP1511 - Programming
Fundamentals

Term 3, 2019 - Lecture 15

What did we learn last week?
Memory

● Allocating memory for use beyond the scope of functions

Multiple File Projects

● C files, H files and including our own files

Linked Lists

● structs, pointers and malloc all together!

What are we learning today?
Linked Lists

● Continuing our work from last week
● Insertion and Removal from Linked Lists
● Cleaning up memory from a linked list
● Finishing our Battle Royale example

Recap - Memory Allocation
Keeping variables available to us

● malloc() and sizeof() and also free()
● These functions allow us to declare variables as pieces of memory
● The memory is allocated to us and we access it via a pointer
● Unlike normal variables, these are never cleaned up by {curly brackets}
● We can keep using them until we don't need them
● We can free() them explicitly

Pointers and Structs
struct node *

A pointer that can aim at memory

struct node

A piece of memory that can store a node

Node in
memory

Usually allocated by malloc()

A memory address that can
aim at a node

Node in
memory

struct node *n =
malloc(sizeof(struct node));

Recap - Multi-file Projects
Separating our code

● Header files (*.h)
● Contain function declarations, but no running code
● Implementation files (*.c)
● Contain implementations of the Header's functions
● We #include header files
● This means the file that includes a header can't see the implementation, it

trusts that it will be given certain functionality

Recap - Linked Lists
A chain of identical structs to hold
information

● Pointers to the same type of struct so
they can be chained together

● Some kind of information stored in
the struct

struct node {
 struct node *next;
 int data;
}

A Linked List

A program's memory (not to scale)

Node

Next

Data

Node

Next

Data

Node

Next

Data

Node

Next

Data
A
pointer
to the
first
node

NULL

Looping through a Linked List
Loop by using the next pointer

● We can jump to the next node by following the current node's next
pointer

● We know we're at the end if the next pointer is NULL

// Loop through a list of nodes, printing out their data
void printData(struct node *n) {
 while (n != NULL) {
 printf("%d\n", n->data);
 n = n->next;
 }
}

Battle Royale - our unfinished example
Using a Linked List to track the players in a game

● We started by adding players to the game
● We were able to loop through and print the players in the game
● We might want to control the order of the list, so we need to be able to

insert at a particular position
● We also want to be able to find and remove players from the list if they're

knocked out of the round

Where are we up to?
What functionality do we have so far?

● createPlayer() makes a node
● printPlayers() can loop through a list and print it out
● We have code in our main that can build a list in a specific order
● What if we want an ordered list?

Inserting Nodes into a Linked List
Linked Lists allow you to insert nodes in between other nodes

● We can do this by simply aiming next pointers to the right places
● We find two linked nodes that we want to put a node between
● We take the next of the first node and point it at our new node
● We take the next of the new node and point it at the second node

This is much less complicated with diagrams . . .

Our Linked List
Before we've tried to insert anything

A program's memory (not to scale)

First Node

Next

2

Second
Node

Next

1
NULLhead

Create a node
A new node is made, it's not connected to anything yet

A program's memory (not to scale)

First Node

Next

2

Second
Node

Next

1
NULLhead

New Node

Next

2

Connect the new node to the second node
Alter the next pointer on the New Node

A program's memory (not to scale)

First Node

Next

2

Second
Node

Next

1
NULLhead

New Node

Next

2

Copy First Node's Next

Connect the first node to the new node
Alter the next pointer on the First Node

A program's memory (not to scale)

First Node

Next

2

Second
Node

Next

1
NULLhead

New Node

Next

2

Set First Node's Next to
New Node's address

Code for insertion

// Create and insert a new node into a list after a given listNode
struct node *insert(struct node* listNode, char newName[]) {
 struct node *n = createNode(newName, NULL);
 if (listNode == NULL) {
 // List is empty, n becomes the only element in the list
 listNode = n;
 n->next = NULL;
 } else {
 n->next = listNode->next;
 listNode->next = n;
 }
 return listNode;
}

Inserting Nodes
We can use insertion to have greater control of where nodes are put in a
list

int main(void) {
 // create the list of players
 struct node *head = createNode("Marc", NULL);
 insert("AndrewB", head);
 insert("Tom", head);
 insert("Aang", head);
 insert("Sokka", head);

 printPlayers(head);

 return 0;
}

Break Time
Homework - it's not real homework, just things that can inspire you

● AlphaGo Documentary (on Netflix)
● I, Robot Short Stories (Isaac Asimov)
● Snow Crash and The Cryptonomicon Novels (Neal Stephenson)
● Human Resource Machine Game (on Steam, iOS and Android)
● Space Alert Board Game (Vlaada Chvatil)

Insertion with some conditions
We can now insert into any position in a Linked List

● We can read the data in a node and decide whether we want to insert
before or after it

● Let's insert our elements into our list based on alphabetical order
● We're going to use a string.h function, strcmp() for this
● strcmp() compares two strings, and returns

○ 0 if they're equal
○ negative if the first has a lower ascii value than the second
○ positive if the first has a higher ascii value than the second

Finding a where to insert
We're going to loop through the list

● This loop assumes the list is already in alphabetical order
● Each time we loop, we're going to keep track of where we've been
● We'll test the name of each node using strcmp()
● We stop looping once we find the first name that's "higher" than ours
● Then we insert before that node

Finding the insertion point

Node

Next

A

Node

Next

C

Node

Next

E

Node

Next

S
A
pointer
to the
first
node

NULL

D

Attempting to insert a node with data: "D" into a sorted list
while maintaining the alphabetical order

loop stops here

Insert between these two nodes

loop starts here

Inserting into a list Alphabetically
struct node *insertAlphabetical(char newName[], struct node* head) {
 struct node *previous = NULL;
 struct node *n = head;
 // Loop through the list and find the right place for the new name
 while (n != NULL && strcmp(newName, n->name) > 0) {
 previous = n;
 n = n->next;
 }
 struct node *insertionPoint = insert(newName, previous);
 if (previous == NULL) {
 // we inserted at the start of the list
 insertionPoint->next = n;
 return insertionPoint;
 } else {
 return head;
 }
}

Removing a node
If we want to remove a specific node

● We need to look through the list and see if a node matches the one we
want to remove

● To remove, we'll use next pointers to connect the list around the node
● Then, we'll free the node itself that we don't need anymore

Removing a node
If we want to remove the Second Node

A program's memory (not to scale)

First Node

Next

3

Third Node

Next

1
NULLhead

Second
Node

Next

2

Skipping the node
Alter the First Node's next to bypass the node we're removing

A program's memory (not to scale)

First Node

Next

3

Third Node

Next

1
NULLhead

Second
Node

Next

2

First Node bypasses
Second Node

Freeing the node
Free the memory from the now bypassed node

A program's memory (not to scale)

First Node

Next

3

Third Node

Next

1
NULLhead

Second
Node

Next

2

Free this node

Finding the node

struct node *removeNode(char name[], struct node* head) {
 struct node *previous = NULL;
 struct node *n = head;
 // Keep looping until we find the matching name
 while (n != NULL && strcmp(name, n->name) != 0) {
 previous = n;
 n = n->next;
 }
 if (n != NULL) {
 // if n isn't NULL, we found the right node

Loop until you find the right match

Removing the node

if (n != NULL) {
 // if n isn't NULL, we found the right node
 if (previous == NULL) {
 // it's the first node
 head = n->next;
 } else {
 previous->next = n->next;
 }
 free(n);

}
 return head;
}

Having found the node, remove it from the list

The Battle Royale Game
In a Battle Royale, people are removed from the game one at a time until
only one person is left. They are the winner

● We can create a list of players
● We can make sure it's in a nice alphabetical order
● We can remove a single player from the list
● Now we need to remove players one at a time
● When there's only one left, they are the winner!

Game code
Once our list is created, we can loop through the game

● We print out the player list (we might want to modify that function!)
● Our user will tell us who was knocked out

 // A game loop that runs until only one player is left
 while (printPlayers(head) > 1) {
 printf("Who just got knocked out?\n");
 char koName[MAX_NAME_LENGTH];
 fgets(koName, MAX_NAME_LENGTH, stdin);
 koName[strlen(koName) - 1] = '\0';
 head = removeNode(koName, head);
 printf("----------\n");
 }
 printf("The winner is: %s\n", head->name);

What did we learn today?
Linked Lists

● Inserting nodes at a specific location
● Inserting nodes into an ordered list
● Finding nodes using a while loop
● Removing nodes

