
Rule-Based Systems

Rule-Based Systems

The components of a rule-based system have the form:
if <condition> then <conclusion>
Rules can be evaluated by:

• backward chaining
• forward chaining

Backward Chaining

• To determine if a decision should be made, work backwards
looking for justifications for the decision.

• Eventually, a decision must be justified by facts.

Forward Chaining

• Given some facts, work forward through inference net.

• Discovers what conclusions can be derived from data.

Forward Chaining

Until a problem is solved or no rule's 'if' part is
satisfied by the current situation:

1. Collect rules whose 'if' parts are satisfied.
 If more than one rule's 'if' part is satisfied, use a

conflict resolution strategy to eliminate all but
one.

2. Do what the rule's 'then' part says to do.

Production Rules

A production rule system consists of
• a set of rules
• working memory that stores temporary data
• a forward chaining inference engine

Match-Resolve-Act Cycle

loop
match conditions of rules with contents of working memory
if no rule matches then stop
resolve conflicts
act (i.e. perform conclusion part of rule)

end loop

BAGGER

1. Check what the customer has selected.
Look to see if something is missing, suggest additions.

2. Put the large items in the bag.
Put big bottles first.

3. Put in the medium sized items.
Put frozen food in plastic bags.

4. Put in the small items wherever there is room.

Working Memory
Step: Check order
Bag1: <empty>
Unpacked:Bread

Glop
Granola (2)
Ice cream
Chips

Attributes of Objects

ITEM CONTAINER TYPE SIZE FROZEN?
Bread Plastic bag Medium No
Glop Jar Small No

Granola Cardboard box Large No
Ice cream cardboard carton Medium Yes

Pepsi Bottle Large No
Chips Plastic bag Medium No

Rules for Step 1
B1:
if the step is check-order
and there is a bag of chips
and there is no soft-drink bottle
then add one botle of soft drink to the order

B2:
if the step is check-order
then discontinue the check-order step
and start the pack-large-items step

Which of these rules should be chosen when in the check order step?

Conflict Resolution
Specificity Ordering

If a rule's condition part is a superset of another, use
the first rule since it is more specialised for the current
task.

Rule Ordering
Choose the first rule in the text, ordered top-to-bottom.

Data Ordering
Arrange the data in a priority list. Choose the rule that
applies to data that have the highest priority.

Conflict Resolution
Size Ordering

Choose the rule that has the largest number of conditions.
Recency Ordering

The most recently used rule has highest priority
The least recently used rule has highest priority
The most recently used datum has highest priority
The least recently used datum has highest priority

Context Limiting
Reduce the likelihood of conflict by separating the rules into
groups, only some of which are active at any one time. Have a
procedure that activates and deactivates groups.

Rules for Step 2
B3:
if the step is pack-large-items
and there is a large item to be packed
and there is a large bottle to be packed
and there is a bag with < 6 large items
then put the bottle into the bag

B4:
if the step is pack-large-items
and there is a large item to be packed
and there is a bag with < 6 large items
then put the large item into the bag

B5:
if the step is pack-large-items
and there is a large item to be packed
then get a new bag

Working Memory So Far
Step: pack-medium-items
Bag1: Pepsi

Granola (2)
Unpacked:Bread

Glop
Ice cream
Chips

Rules for Step 3
B7:
if the step is pack-medium-items
and there is a medium item to be packed
and there is an empty bag or a bag with medium items
and the bag is not yet full
and the medium item is frozen
and the medium item is not in a freezer bag
then put the medium item in a freezer bag

B8:
if the step is pack-medium-items
and there is a medium item to be packed
and there is an empty bag or a bag with medium items
and the bag is not yet full
then put the medium item in the bag

Rules for Step 3
B9:
if the step is pack-medium-items
and there is a medium item to be packed
then get a new bag

B10:
if the step is pack-medium-items
then discontinue the pack-medium-items step
and start the pack-small-items step

Working Memory So Far
Step: pack-small-items
Bag1: Pepsi

Granola (2)
Bag2: Bread

Ice cream (in freezer bag)
Chips

Unpacked:Glop

Rules for Step 4
B11:
if the step is pack-small-items
and there is a small item to be packed
and the bag is not yet full
and the bag does not contain bottles
then put the small item in the bag

B12:
if the step is pack-small-items
and there is a small item to be packed
and the bag is not yet full
then put the small item in the bag

Rules for Step 4
B13:
if the step is pack-small-items
and there is a small item to be packed
then get a new bag

B14:
if the step is pack-small-items
then discontinue the pack-small-items step
and stop

Implementing Rules in
Prolog% Rules

rule1

if a

and b

and c

then d.

rule2

if a

and b

and c

then d.

• We want to express rules in a
natural way.

• Prolog's allows you to define
your own operators to make
data structures readable

• a, b, c, etc may be any Prolog
term, including variables

Defining Operators
op(900, xfx ,if)!

op(800, xfx, then)!

op(700, xfy, and)!

• First argument is the operator's
precedence

• Second argument is the
operator's associativity

• yfx – left associative

• xfy – right associative

• xfx – non-associative

• Third argument is the operator's
name (may be a list of names
with the same properties).

Working Memory
% Working memory

wm(a).

wm(b).

wm(c).

• We use a predicate symbol, "wm", to distinguish
working memory elements in Prolog's database

The Match-Resolve-Act Cycle

exec :-

 repeat,

 select_rule(R),

 fire(R), !.

select_rule(SelectedRule) :-

 bagof(Rule, can_fire(Rule), Candidates),

 resolve(Candidates, SelectedRule).

Always succeeds on backtracking

• If "fire" succeeds, cut will prevent backtracking

• If "fire" fails, the cycle will repeat

"bagof" collects all solutions to "can_fire"

Finding rules that can fire
can_fire(RuleName if Condition then Conclusion) :-

 RuleName if Condition then Conclusion,

 not(already_fired(RuleName, Condition)),

 satisfied(Condition).

Look up rule in database

Has it already been fired?

Are all conditions satisfied

Satisfying Condition

satisfied(A and B) :- !,

 wm(A),

 satisfied(B).

satisfied(A) :-

 wm(A).

• If pattern is "A and ..." then look
for A in working memory and
then check rest recursively.

• (A and B) = (x and y and z)

A = x
B = y and Z

• If pattern is a single predicate.
Look it up.

• Note that "!" prevents a
conjunction reaching this clause

Conflict Resolution

resolve([], []).

resolve([X|_], X).

• Pick the first rule

• Check in case no rules were found

Exercise:
 extend resolve to perform:

• specificity ordering
• followed by choosing the largest rule
• followed by choosing the first one.

Firing Rules
fire(RuleName if Condition then Conclusion) :- !,

 assert(already_fired(RuleName, Condition)),

 add_to_wm(Conclusion),

 fail.

fire(_).

Add a new clause to the database

Add all terms in conclusion to database
if not already there

Force backtracking so that a new cycle starts

Succeed if no rule is found so that cycle ends

Add new elements to
working memory

add_to_wm(A and B) :- !,

 assert_if_not_present(A),

 add_to_wm(B).

add_to_wm(A) :-

 assert_if_not_present(A).

assert_if_not_present(A) :-

 wm(A), !.

assert_if_not_present(A) :-

 assert(wm(A)).

For each term in condition, add it to
working memory if it is not already
there.

• If term is in working memory, don't do
anything

• Otherwise, add new term to working
memory.

Starting the cycle
run :-

 retractall(already_fired(_, _)),

 exec.

• Remove from the database all "already_fired"
clauses.

• call "exec" to start the cycle.

