COMP4418, 2019 – Exercises

1 Answer Set Programming

1.1 Modelling

Let $S = \{s_1, \ldots, s_n\}$ be a set of sets. A set cover of S is a set $C \subseteq S$ such that $\bigcup_{s \in S} s = \bigcup_{s \in C} s$. A k-set cover is a set cover of size k, that is, |C| = k.

For instance, for an input $S = \{\{1, 2\}, \{2, 3\}, \{4, 5\}, \{1, 2, 3\}\}$, there is a 2-set cover $C = \{\{1, 2, 3\}, \{4, 5\}\}$ since $\bigcup_{s \in S} s = \{1, 2\} \cup \{2, 3\} \cup \{4, 5\} \cup \{1, 2, 3\} = \{1, 2, 3\} \cup \{4, 5\} = \bigcup_{s \in C} s$.

Write an ASP program that decides the k-SET-COVER problem:

Input: a set of sets and a natural number $k \ge 0$.

Problem: decide if there is a k-set cover.

Assume the input parameter $S = \{s_1, \ldots, s_n\}$ is encoded by a binary predicate s in the way that $x \in s_i$ iff s(i,x). The input parameter k is given as constant symbol k. Use a unary predicate c to represent the output C in the way that $s_i \in C$ iff c(i).

```
% Instance encoding of the above example:
% s(1, (1;2)). is a shorthand for s(1,1). s(1,2).
s(2, (2;3)).
s(3, (4;5)).
s(4, (1;2;3)).
% Helper predicates.
universe(X) :- s(S,X).
covered(X) :- c(S), s(S,X).
% Generate candidate of cardinality k.
k { c(S) : s(S,X) } k.
% Test that the candidate covers the whole universe.
:- universe(X), not covered(X).
#show c/1.
```

1.2 Semantics

Consider the following program P.

$$a.$$

$$c \leftarrow \operatorname{not} b, \operatorname{not} d.$$

$$d \leftarrow a, \operatorname{not} c.$$

Determine the stable models of S.

S	Reduct P^S	Stable model?
$\{a, b, c, d\}$	<i>a</i> .	×
$\{a, b, c\}$	<i>a</i> .	×
$\{a, b, d\}$	$a. d \leftarrow a.$	×
$\{a, c, d\}$	<i>a</i> .	×
$\{b,c,d\}$	<i>a</i> .	×
$\{a,b\}$	$a. d \leftarrow a.$	×
$\{a,c\}$	a. c.	1
$\{a,d\}$	$a. d \leftarrow a.$	1
$\{b,c\}$	<i>a</i> .	×
$\{b,d\}$	$a. d \leftarrow a.$	×
$\{c,d\}$	<i>a</i> .	×
$\{a\}$	a. c. $d \leftarrow a$.	×
$\{b\}$	$a. d \leftarrow a.$	×
$\{c\}$	a. c.	×
$\{d\}$	$a. d \leftarrow a.$	X
{}	a. c. $d \leftarrow a$.	×