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Who are we?

I am Dr Paul Hunter. My research is on graph theory, algorithms,
and formal verification.

PhD Thesis: Complexity and Infinite Games

Recent(ish) papers:

Expressive completeness of MTL (2013),
When is MTL expressively complete? (2013)

Gerald Huang and Ben Nott will be taking tutorials.

Dr Liam O’Connor, Dr Rob van Glabbeek, and A/Prof. Peter
Höfner are the former lecturers for this course.
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Contacting Us

http://www.cse.unsw.edu.au/~cs3153

Forum

There is an ed forum available on the website. Questions about
course content should typically be made there. You can ask us
private questions to avoid spoiling solutions to other students.

Administrative questions should be sent to
paul.hunter@unsw.edu.au.
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Hardware Bugs: 1994 FDIV Bug

4195835

3145727
=

1.33370

Missing entries in a hardware
lookup table lead to 3-5 million de-
fective floating point units.

Consequences:

Intel image badly damaged

$450 million to replace FPUs.

5



Welcome Famous Bugs Verification Admin Mathematical Preliminaries Synchronisation

Hardware Bugs: 1994 FDIV Bug

4195835

3145727
= 1.33370

Missing entries in a hardware
lookup table lead to 3-5 million de-
fective floating point units.

Consequences:

Intel image badly damaged

$450 million to replace FPUs.

5



Welcome Famous Bugs Verification Admin Mathematical Preliminaries Synchronisation

Software Bugs: Asiana 777 Crash in 2014
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Software Bugs: Therac-25 (1980s)

Radiation therapy
machine.

Two operation modes:
high and low energy.

Only supposed to use
high energy mode with a
shield.

Bug caused high energy
mode to be used without
shield.

At least five patients died
and many more exposed
to high levels of radiation.
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Software Bugs: Toyota Prius (2005)

Sudden stalling at
highway speeds.

Bug triggered ”fail-safe”
mode (heh).

Consequences:

75000 cars recalled.

Cost unknown. . . but
high.
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Software Bugs: Ariane 5, Flight 501 (1996)

Reuse of software from
Ariane 4

Overflow converting from
64 bit to 16 bit unsigned
integers.

Consequences:

Rocket exploded after 37
seconds.

US$370 million cost
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Northeast Blackout (2003)

Alarm went unnoticed.

Bug in alarm system,
probably due to a race
condition.

Consequences:

Total power failure for 7
hours, some areas up to 2
days.

55 million people affected

More than US$6 billion
cost
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Tesla Recall (Feb 2022)

Self-driving software
would roll through stop
signs.

“Feature” enabled in
certain circumstances (30
mph zone, no cars or
pedestrians detected)

Cars will drive through
stop signs at up to 6 mph

Consequences:

54,000 vehicles recalled

Cost: Have you bought a
car recently?
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Ethereum bug

What is wrong with this code:

Example

transfer(account to, account from, uint amount){
require (balances[from] > amount);

balancesFrom := balances[from] - amount;

balancesTo := balances[to] + amount;

balances[from] := balancesFrom;

balances[to] := balancesTo;

}
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Verification

Ensuring that software or hardware satisfies requirements.

Requirements are:

That it does what it’s supposed to (morally, liveness)

That it doesn’t do what it’s not supposed to (morally, safety)

We’ll get to more precise definitions later.

Talk by Moshe Vardi (70+ year history of Program Verification):
https://www.youtube.com/watch?v=7RZc9ZKW2jg

13

https://www.youtube.com/watch?v=7RZc9ZKW2jg


Welcome Famous Bugs Verification Admin Mathematical Preliminaries Synchronisation

Verification

Ensuring that software or hardware satisfies requirements.

Requirements are:

That it does what it’s supposed to (morally, liveness)

That it doesn’t do what it’s not supposed to (morally, safety)

We’ll get to more precise definitions later.

Talk by Moshe Vardi (70+ year history of Program Verification):
https://www.youtube.com/watch?v=7RZc9ZKW2jg

13

https://www.youtube.com/watch?v=7RZc9ZKW2jg


Welcome Famous Bugs Verification Admin Mathematical Preliminaries Synchronisation

Verification

Ensuring that software or hardware satisfies requirements.

Requirements are:

That it does what it’s supposed to (morally, liveness)

That it doesn’t do what it’s not supposed to (morally, safety)

We’ll get to more precise definitions later.

Talk by Moshe Vardi (70+ year history of Program Verification):
https://www.youtube.com/watch?v=7RZc9ZKW2jg

13

https://www.youtube.com/watch?v=7RZc9ZKW2jg


Welcome Famous Bugs Verification Admin Mathematical Preliminaries Synchronisation

Verification

Ensuring that software or hardware satisfies requirements.

Requirements are:

That it does what it’s supposed to (morally, liveness)

That it doesn’t do what it’s not supposed to (morally, safety)

We’ll get to more precise definitions later.

Talk by Moshe Vardi (70+ year history of Program Verification):
https://www.youtube.com/watch?v=7RZc9ZKW2jg

13

https://www.youtube.com/watch?v=7RZc9ZKW2jg


Welcome Famous Bugs Verification Admin Mathematical Preliminaries Synchronisation

Verification

Ensuring that software or hardware satisfies requirements.

Requirements are:

That it does what it’s supposed to (morally, liveness)

That it doesn’t do what it’s not supposed to (morally, safety)

We’ll get to more precise definitions later.

Talk by Moshe Vardi (70+ year history of Program Verification):
https://www.youtube.com/watch?v=7RZc9ZKW2jg

13

https://www.youtube.com/watch?v=7RZc9ZKW2jg


Welcome Famous Bugs Verification Admin Mathematical Preliminaries Synchronisation

Does a program satisfy requirements?

We could try testing, but it’s not exhaustive.

Program testing can be used to show the presence of bugs, but
never to show their absence!

Edsger W. Dijkstra (1970) ”Notes On Structured Programming” (EWD249)

We want a rigorous and exhaustive method of verification.
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Formal Verification

Source Code
in a PL Syntax

Requirements
in English

Formal Model

J·K Formal Semantics
(COMP3161/9164)

Requirements
in Logic

Formalisation

|=
mathematically

satisfies
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Methods of Formal Verification

Method Automation Speed Expressivity Courses
Pen/Paper
Proof

None Slow Unbounded COMP6721,
COMP2111

Proof
Assistant

Some Medium Unbounded COMP4161

Model
Checking

Full Fast Limited This
course!

Static
Analysis

Full Fast Limited This
course!

The twin foci of this course:
Model Checking and Static Analysis.
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Model Checking

Introduced independently by Clarke, Emerson and Sistla (1980)
and Queille and Sifakis (1980). Turing Award 2007

Formal Model

Some kind of finite automata.

Requirements

Specify dynamic requirements with a temporal logic (Pnueli 1977 -
Turing Award 1996).

By dynamic we mean a property of the program’s executions.

Model checkers work by exhaustively checking the state space of
the program against requirements.

Any forseeable problems with that?
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State space explosion
Imagine a program with a 100 integer variables ∈ [0, 9].

10100 possible states.

Number of atoms in the universe: 1078.

Concurrency/nondeterminism also exhibits this problem. How
many states are there for a program with n processes consisting of
m steps each?

n = 2 3 4 5 6

m = 2 6 90 2520 113400 222.8

3 20 1680 218.4 227.3 236.9

4 70 34650 225.9 238.1 251.5

5 252 219.5 233.4 249.1 266.2

6 924 224.0 241.0 260.2 281.1

(nm)!

m!n

18
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State Space Explosion

There are many techniques to make model checking a more
tractable problem, such as symbolic and bounded model checking,
SAT-based techniques, and abstraction/refinement. We will
examine these techniques throughout the course.

Tools

SPIN, an explicit LTL model checker used for protocols, which
uses heuristics to control state space.

nuSMV, a symbolic model checker using binary decision
diagrams.

SLAM and CBMC, which are SAT-based tools using bounded
model checking.
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Static Analysis

Check static invariants about programs, about data or control flow.

Example (Static Invariants)

No NULL-pointer dereferences, no array out-of-bound accesses.

Based on the abstract interpretation technique of Cousot and
Cousot (1977). We’ll look at this around Week 7, but:

Key Idea

Abstract from specific values to classes of values, increasing the
non-determinism of the program but making it easier to analyse
possible effects of the program.

Tools: ASTREE, Absint, Coverity, Grammatech, Polyspace,
PVS-Studio, Goanna etc. etc.

20



Welcome Famous Bugs Verification Admin Mathematical Preliminaries Synchronisation

Static Analysis

Check static invariants about programs, about data or control flow.

Example (Static Invariants)

No NULL-pointer dereferences, no array out-of-bound accesses.

Based on the abstract interpretation technique of Cousot and
Cousot (1977). We’ll look at this around Week 7, but:

Key Idea

Abstract from specific values to classes of values, increasing the
non-determinism of the program but making it easier to analyse
possible effects of the program.

Tools: ASTREE, Absint, Coverity, Grammatech, Polyspace,
PVS-Studio, Goanna etc. etc.

20



Welcome Famous Bugs Verification Admin Mathematical Preliminaries Synchronisation

Static Analysis

Check static invariants about programs, about data or control flow.

Example (Static Invariants)

No NULL-pointer dereferences, no array out-of-bound accesses.

Based on the abstract interpretation technique of Cousot and
Cousot (1977). We’ll look at this around Week 7, but:

Key Idea

Abstract from specific values to classes of values, increasing the
non-determinism of the program but making it easier to analyse
possible effects of the program.

Tools: ASTREE, Absint, Coverity, Grammatech, Polyspace,
PVS-Studio, Goanna etc. etc.

20



Welcome Famous Bugs Verification Admin Mathematical Preliminaries Synchronisation

Learning outcomes

Understand foundations of automata theory and temporal
logics

Compare and contrast different LTL and CTL model checking
techniques and model checking tools

Apply modern LTL and CTL model checking tools to
verification tasks

Compare and contrast different static analysis techniques for
program verification

Understand modern advanced verification techniques for
timed systems

Develop formal models of software systems, amenable to
automatic verification

21
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Course schedule

A (very) tentative course schedule, subject to change:
Week 1 Background, logic, automata

Week 2 Model checking, Safety and Liveness

Week 3 Tool: Spin

Week 4 Simulation & Bisimulation

Week 5 Verification Games

Week 6 Flexibility week

Week 7 Static Analysis

Week 8 Symbolic Model Checking

Week 9 Binary Decision Diagrams

Week 10 Timed automata and languages

22



Welcome Famous Bugs Verification Admin Mathematical Preliminaries Synchronisation

What do we expect?

Maths

This course uses a significant amount of discrete mathematics.
You will need to be reasonably comfortable with logic, set theory
and induction. MATH1081 ought to be sufficient for aptitude in
these skills, but experience has shown this is not always true.

Programming

We expect you to be familiar with imperative programming
languages like C. Course assignments may require some
programming in modelling languages. Some self-study may be
needed for these tools.

23
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Assessment

Assessment in this course consists of:

weekly formative assessment tasks (presented in the formatif
system); and

a final take-home exam;

with equal weighting between both assessment types.

24
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Formative assessments

Students select the level of work to be attempted (can be
changed)

Tasks are to be completed to satisfactory level

Regular feedback from teaching staff to achieve task
completion

Final grade determined by portfolio of tasks completed

25
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Resources

Lecture Recordings

In previous years, no recordings were made available for this
course. I will endeavour make them available this year, however
their quality and availability is not guaranteed.

Lectures are intended to be an interactive experience – I will be
delivering them in real-time.

The only way to ensure you have the best lecture experience for
this course is to attend the lectures!

Textbooks

This course follows more than one textbook. Each week’s slides
will include a bibliography. A list of books is given in the course
outline, all of the books listed are available from the library.

26
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Logic

We typically state our requirements with a logic.

Definition

A logic is a formal language designed to express logical reasoning.
Like any formal language, logics have a syntax and semantics.

Example (Propositional Logic Syntax)

A set of atomic propositions P = {a, b, c, . . . }
An inductively defined set of formulae:

Each p ∈ P is a formula.
If P and Q are formulae, then P ∧ Q is a formula.
If P is a formula, then ¬P is a formula.

(Other connectives are just sugar for these, so we omit them)

27
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Semantics

Semantics are a mathematical representation of the meaning of a
piece of syntax. There are many ways of giving a logic semantics,
but we will use models.

Example (Propositional Logic Semantics)

A model for propositional logic is a valuation V ⊆ P, a set of
“true” atomic propositions. We can extend a valuation over an
entire formula, giving us a satisfaction relation:

V |= p ⇔ p ∈ V
V |= φ ∧ ψ ⇔ V |= φ and V |= ψ
V |= ¬φ ⇔ V ̸|= φ

We read V |= φ as V “satisfies” φ.

28
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Automata

We will model our computations using finite automata.

Definition

A finite automata (FA) is a quintuple (Q, q0,Σ, δ,F ) where:

Q is a finite set of states.

q0 ∈ Q is the initial state.

Σ is a finite set of actions called an alphabet.

δ is a transition relation Q × Σ → 2Q .

F ⊆ Q is a set of final states.

A FA is called deterministic iff δ is a function, i.e.

∀(s, a) ∈ Q × Σ. |δ(s, a)| ≤ 1

Example: binary strings ending with double zero

29
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Automata

A run from an automata A is a sequence of transitions:

q0
a1−→ q1

a2−→ · · · an−1−−−→ qn−1
an−→ qn

This run can also be written q0
a1a2...an−−−−−→ qn or, if we don’t care

about the actions q0
⋆−→ qn.

The language L(A) of an automata A is all sequences of actions
(words) whose runs end in the set of final states F :

L(A) = {w ∈ Σ∗ | q0
w−→ q, q ∈ F}
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Non-determinism

Non-deterministic finite automata can be converted to
deterministic finite automata, by using sets of NFA states as the
set of states for the DFA (the subset construction).

ε-transitions

We can enrich NFAs with transitions that do not have actions (or
equivalently, transitions with the empty word ε as their action)
without affecting expressiveness. Subset construction still works.

Thus,
DFA = NFA = NFAε
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Modelling with Automata

q0 q1 q3

q2

start

stop

terminate

suspendresume

What sort of runs can this automata produce?
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Intersection of Languages

Problem

Let A be a FA such that L(A) is the set of strings with an even
number of as.

Let B be a FA such that L(B) is the set of strings with an odd
number of bs.
How can we combine A and B into a new automata C such that
L(C ) = L(A) ∩ L(B)?
(try to come up with a general technique for any automata)

We need to create the product of two automata.
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Automata Product

Definition

The product of two automata
A1 = (Q1, q

1
0 ,Σ1, δ1,F1) and

A2 = (Q2, q
2
0 ,Σ2, δ2,F2)

is defined as: (Q, q0,Σ, δ,F ) where:

Q = Q1 × Q2

q0 = (q10 , q
2
0)

Σ = Σ1 ∪ Σ2

δ( (q1, q2) , a) =
{(q′1, q′2) | q′1 ∈ δ1(q1, a), q

′
2 ∈ δ2(q2, a)} if a ∈ Σ1 ∩ Σ2

{(q′1, q2) | q′1 ∈ δ1(q1, a)} if a ∈ Σ1 \ Σ2

{(q1, q′2) | q′2 ∈ δ2(q2, a)} if a ∈ Σ2 \ Σ1

F = F1 × F2
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Task and Scheduler

q0 q1 q3

q2

start

stop

terminate

suspendresume

s0 s1

start

stop

s2

suspend

resume

Products can encode communication. Compute the product of
these two processes.
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Integer Variables

Problem

Imagine we extended our notion of actions to allow automata to
read or write from a finite set of bounded integer variables.
Does this affect the expressivity of automata?

No. We can encode the integers as automata and use
synchronisation.
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Message passing

q0 q1

q?

receive

s0 s1

q!

send

Different tools offer broadcast or unicast communication. Check
the manual!
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