10. Iterative Compression

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2015

Contents

1	Introduction	1
2	Feedback Vertex Set	2
3	Min r-Hitting Set	4
4	Further Reading	7

1 Introduction

Iterative Compression

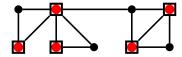
For a minimization problem:

- Compression step: Given a solution of size k + 1, compress it to a solution of size k or prove that there is no solution of size k
- Iteration step: Incrementally build a solution to the given instance by deriving solutions for larger and larger subinstances
- Seen a lot of success in Parameterized Complexity
- Examples: best known fixed parameter algorithms for (DIRECTED) FEEDBACK VERTEX SET, EDGE BIPARTIZATION, ALMOST 2-SAT, ...

Example: Vertex Cover

A vertex cover in a graph G = (V, E) is a subset of its vertices $S \subseteq V$ such that every edge of G has at least one endpoint in S.

Vertex Cover Input: A graph G = (V, E) and an integer k Parameter: k Question: Does G have a vertex cover of size k?



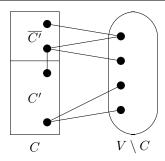
We will design a (slow) iterative compression algorithm for VERTEX COVER to illustrate the technique.

Vertex Cover: Compression Step

Comp-VC

Input: graph G = (V, E), integer k, vertex cover C of size k + 1 of G

Output: a vertex cover C^* of size $\leq k$ of G if one exists



- Go over all partitions $(C', \overline{C'})$ of C
- $C^* = C' \cup N(\overline{C'})$
- If $\overline{C'}$ is an independent set and $|C^*| \leq k$ then return C^*

Vertex Cover: Iteration Step

Use algorithm for Comp-VC to solve Vertex Cover.

- Order vertices: $V = \{v_1, v_2, \dots, v_n\}$
- Define $G_i = G[\{v_1, v_2, \dots, v_i\}]$
- $C_0 = \emptyset$
- For i = 1..n, find a vertex cover C_i of size $\leq k$ of G_i using the algorithm for COMP-VC with input G_i and $C_{i-1} \cup \{v_i\}$. If G_i has no vertex cover of size $\leq k$, then G has no vertex cover of size $\leq k$.

Final running time: $O^*(2^k)$

2 Feedback Vertex Set

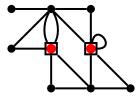
A feedback vertex set of a multigraph G = (V, E) is a set of vertices $S \subseteq V$ such that G - S is acyclic.

FEEDBACK VERTEX SET (FVS)

Input: Multigraph G = (V, E), integer k

Parameter: k

Question: Does G have a feedback vertex set of size at most k?



Note: We already saw an $O^*((3k)^k)$ time algorithm for FVS. We will now aim for a $O^*(c^k)$ time algorithm, with $c \in O(1)$.

Compression Problem

 $\operatorname{Comp-FVS}$

Input: graph G = (V, E), integer k, feedback vertex set S of size k + 1 of G

Output: a feedback vertex set S^* of size $\leq k$ of G if one exists

Iteration step

- Order vertices: $V = \{v_1, v_2, \dots, v_n\}$
- Define $G_i = G[\{v_1, v_2, \dots, v_i\}]$
- $S_0 = \emptyset$
- For i = 1..n, find a feedback vertex set S_i of size $\leq k$ of G_i using the algorithm for Comp-FVS with input G_i and $S_{i-1} \cup \{v_i\}$. If G_i has no feedback vertex set of size $\leq k$, then G has no feedback vertex set of size $\leq k$.

Suppose Comp-FVS can be solved in $O^*(c^k)$ time. Then, using this iteration, FVS can be solved in $O^*(c^k)$ time.

Compression step

To solve Comp-FVS, go through all partitions $(S', \overline{S'})$ of S. For each of them, we will want to find a feedback vertex set S^* of G with $|S^*| < |S|$ and $S' \subseteq S^* \subseteq V \setminus \overline{S'}$ if one exists. Equivalently, find a feedback vertex set S'' of G - S' with $|S''| < |\overline{S'}|$ and $S'' \cap \overline{S'} = \emptyset$. We arrive at the following problem:

DISJOINT-FVS

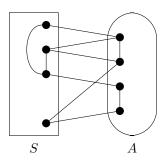
Input: graph G = (V, E), integer k, feedback vertex set S of size k+1 of G Output: a feedback vertex set S^* of G with $|S^*| \leq k$ and $S^* \cap S = \emptyset$, if one exists

If DISJOINT-FVS can be solved in $O^*(d^k)$ time, then COMP-FVS can be solved in

$$O^*\left(\sum_{i=0}^{k+1} {k+1 \choose i} d^i\right) \subseteq O^*((d+1)^k)$$
 time.

Algorithm for Disjoint-FVS

Denote $A := V \setminus S$.



Simplification rules for Disjoint-FVS

Start with $S^* = \emptyset$.

(cycle-in-S)

If G[S] is not acyclic, then return No.

(budget-exceeded)

If k < 0, then return No.

(finished)

If $G - S^*$ is acyclic, then return S^* .

(creates-cycle)

If $\exists v \in A$ such that $G[S \cup \{v\}]$ is not acyclic, then add v to S^* and remove v from G.

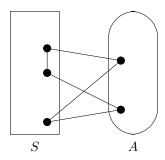
(Degree- (≤ 1))

If $\exists v \in V$ with $d_G(v) \leq 1$, then remove v from G.

(Degree-2)

If $\exists v \in V$ with $d_G(v) = 2$ and at least one neighbor of v is in A, then add an edge between the neighbors of v (even if there was already an edge) and remove v from G.

Simplified instance:



Branching rule for Disjoint-FVS

Select a vertex $v \in A$ with at least 2 neighbors in S. Such a vertex exists if no simplification rule applies (for example, we can take a leaf in G[A]). Branch into two subproblems:

 $v \in S^*$: add v to S^* , remove v from G, and decrease k by 1

 $v \notin S^*$: add v to S

Exercise: Running time

• Prove that this algorithm has running time $O^*(4^k)$.

Hint: Use the measure k + cc(S), where cc(S) is the number of connected components of G[S].

Result for Feedback Vertex Set

Theorem 1. FEEDBACK VERTEX SET can be solved in $O^*(5^k)$ time.

3 Min r-Hitting Set

A set system S is a pair (V, H), where V is a finite set of elements and H is a set of subsets of V. The rank of S is the maximum size of a set in H, i.e., $\max_{Y \in H} |Y|$.

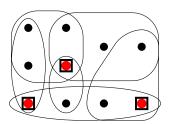
A hitting set of a set system S = (V, H) is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

(universe)-MIN-r-HITTING SET (r-HS)

Input: A rank r set system S = (V, H)

Parameter: n = |V|

Output: A smallest hitting set of S



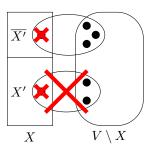
 ${\bf Note} :$ The corresponsing decision problem is trivially FPT.

Compression Step

Comp-r-HS

Input: set system S = (V, H), integer k, hitting set X of size k + 1 of S

Output: a hitting set X^* of size $\leq k$ of S if one exists



Go over all partitions $(X', \overline{X'})$ of X such that $|X'| \ge 2|X| - n - 1$. Reject a partition if there is a $Y \in H$ such that $Y \subseteq \overline{X'}$. Compute a hitting set X'' of size $\le k - |X'|$ for (V', H'), where $V' = V \setminus X$ and $H' = \{Y \cap V : Y \in H \land Y \cap X' = \emptyset\}$, if one exists. If one exists, then return $X^* = X' \cup X''$.

• The algorithm considers only partitions into $(X', \overline{X'})$ such that $|X'| \ge 2|X| - n - 1$. Number of partitions:

$$O\left(\max\left\{2^{2n/3}, \max_{2n/3 \le j \le n} \binom{j}{2j-n}\right\}\right) = O\left(\max_{2n/3 \le j \le n} \binom{j}{2j-n}\right)$$

- The subinstances (V', H') where $V' = V \setminus X$ and $H' = \{Y \cap V : Y \in H \land Y \cap X' = \emptyset\}$ are instances of (r-1)-HS
- Suppose (r-1)-HS can be solved in $O^*((\alpha_{r-1})^n)$ time. Then, r-HS can be solved in

$$O^* \left(\max_{2n/3 \le j \le n} {j \choose 2j-n} (\alpha_{r-1})^{n-j} \right) \text{ time}$$
 (1)

• For example, using a $O(1.6278^n)$ algorithm for 3-HS [Wahlström '07], we obtain a $O(1.8704^n)$ time algorithm for 4-HS ¹3-; the maximum in (1) is obtained for $j \approx 0.6824 \cdot n$.

Iteration Step

- (V, H) instance of r-HS with $V = \{v_1, v_2, \dots, v_n\}$
- $V_i = \{v_1, v_2, \dots, v_i\}$ for i = 1 to n
- $\bullet \ H_i = \{Y \in H : Y \subseteq V_i\}$
- Note that $|X_{i-1}| \leq |X_i| \leq |X_{i-1}| + 1$ where X_j is a minimum hitting set of the instance (V_i, H_i)

Theorem 2 (Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010). 4-HS can be solved in $O(1.8704^n)$ time.

• One can generalize this result to the counting version of r-HS for any fixed r: count the number of minimum hitting sets of the given set system.

^{1,}

#r-Hitting Set

Theorem 3 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010]). If there exists a $O^*((\alpha_{k-1})^n)$ time algorithm for #(r-1)-HS with $\alpha_{r-1} \leq 2$, then #r-HS can be solved in time

$$O^* \left(\max_{2n/3 \le j \le n} \left\{ \binom{j}{2j-n} (\alpha_{r-1})^{n-j} \right\} \right).$$

• If $\alpha_{r-1} \geq 1.6553$, then the following result is better

Theorem 4 ([Fomin, Gaspers, Kratsch, Liedloff, and Saurabh, 2010]). If there exists a $O^*((\alpha_{r-1})^n)$ time algorithm for #(r-1)-HS with $\alpha_{k-1} \leq 2$, then #r-HS can be solved in time

$$\min_{0.5 \le \beta \le 1} \max \left\{ O^* \left(\binom{n}{\beta n} \right), \ O^* \left(2^{\beta n} (\alpha_{r-1})^{n-\beta n} \right) \right\}.$$

Results for r-HS and #r-HS

\overline{r}	#r-HS	$r ext{-HS}$
2	$O(1.2377^n)$ [Wahlström '08]	$O(1.2002^n)$ [Xiao, Nagamoshi '13]
3	$O(1.7198^n)$ [Theorem 3]	$O(1.6278^n)$ [Wahlström '07]
4	$O(1.8997^n)$ [Theorem 4]	$O(1.8704^n)$ [Theorem 3]
5	$O(1.9594^n)$ [Theorem 4]	$O(1.9489^n)$ [Theorem 4]
6	$O(1.9824^n)$ [Theorem 4]	$O(1.9781^n)$ [Theorem 4]
7	$O(1.9920^n)$ [Theorem 4]	$O(1.9902^n)$ [Theorem 4]

Exercise

A cluster graph is a graph where every connected component is a complete graph.

Cluster Vertex Deletion

Input: Graph G = (V, E), integer k

Parameter: k

Question: Is there a set of vertices $S \subseteq V$ with $|S| \le k$ such that G - S is a cluster graph?

Recall that G is a cluster graph iff G contains no induced P_3 .

• Design an $O^*(2^k)$ time algorithm for Cluster Vertex Deletion.

Hints: (1) Show that the disjoint version of the problem can be solved in polynomial time: given (G = (V, E), S, k) such that |S| = k + 1 and G - S is a cluster graph, find a $S^* \subseteq V \setminus S$ with $|S^*| \leq k$ such that $G - S^*$ is a cluster graph. (2) Simplification rule for $v \in V \setminus S$ inducing a P_3 with 2 vertices in S. Reduce to maximum weight matching.

Solution sketch

DISJOINT-CVD

Input: graph G = (V, E), integer k, cluster vertex deletion set S of size k + 1 of GOutput: a cluster vertex deletion set S^* of G with $|S^*| \le k$ and $S^* \cap S = \emptyset$, if one exists

Simplification rules:

- If G[S] contains an induced P_3 , then return No.
- If $\exists v \in V \setminus S$ such that $G[S \cup \{v\}]$ contains an induced P_3 , then set $G \leftarrow G v$ and $k \leftarrow k 1$.

Now each vertex in $V \setminus S$ has either no neighbor in S or is adjacent to all the vertices of exactly one cluster of G[S]. Reduce the problem to maximum weighted matching in an auxiliary graph where one independent set corresponds to the clusters in G[S] and each vertex in the other independent set corresponds to cliques neighboring exactly one cluster in G[S]. It remains to define the edges of the auxiliary graph and their weights.

4 Further Reading

- Chapter 4, *Iterative Compression* in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, MichałPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Section 11.3, *Iterative Compression* in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
- Section 6.1, *Iterative Compression: The Basic Technique* in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Section 6.2, *Edge Bipartization* in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.