NAME OF CANDIDATE:
STUDENT ID:
SIGNATURE:

THE UNIVERSITY OF NEW SOUTH WALES

2019 TERM 3

COMP6741: PARAMETERIZED AND EXACT COMPUTATION

TRIAL mid-session Quiz

- 1. TIME ALLOWED 90 minutes
- 2. READING TIME 0 minutes
- 3. THIS EXAMINATION PAPER HAS 3 PAGES
- 4. TOTAL NUMBER OF QUESTIONS 3
- 5. TOTAL MARKS AVAILABLE 100
- 6. ALL QUESTIONS ARE NOT OF EQUAL VALUE. MARKS AVAILABLE FOR EACH QUESTION ARE SHOWN IN THE EXAMINATION PAPER.
- 7. ALL ANSWERS MUST BE WRITTEN IN INK. PENCILS MAY BE USED ONLY FOR DRAWING, SKETCHING OR GRAPHICAL WORK.
- 8. THIS PAPER MAY NOT BE RETAINED BY CANDIDATE.

SPECIAL INSTRUCTIONS

- 9. ANSWER ALL QUESTIONS.
- 10. CANDIDATES MAY BRING TO THE EXAMINATION: any textbooks or notes (hard-copy), including annotated printed lecture notes, textbooks, handwritten and printed notes, UNSW approved calculator (but no other electronic devices).
- 11. THE FOLLOWING MATERIALS WILL BE PROVIDED: answer booklet

Your answers may rely on theorems, lemmas and results stated in the lecture notes.

1 Basics of Parameterized Complexity

[20 marks]

Prove the following theorem.

Theorem 1. Let Π be a parameterized decision problem. If Π is FPT, then there exists a computable function f such that Π can be solved in time $f(k) + n^{O(1)}$, where k is the parameter and n is the instance size.

2 Max Cut – Kernel and FPT algorithm

[60 marks]

A cut in a graph G = (V, E) is a partition of the vertex set V into two sets U and W. The size of a cut is the number of edges with one endpoint in U and the other endpoint in W, i.e., $|\{uv \in E : u \in U \text{ and } v \in W\}|$. Consider the MAX CUT problem.

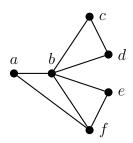
Max Cut

Input: A graph G = (V, E), an integer k

Parameter: k

Question: Does G have a cut of size at least k?

Example:



The instance (H, 5), where H is the depicted graph, is a YES-instance, since the vertex partition $\{\{a,b\},\{c,d,e,f\}\}\$ is a cut of size 5.

1. Design a simplification rule that removes vertices of degree 0. [10 marks]

2. Design a simplification rule that removes vertices of degree 1. [10 marks]

3. Obtain a kernel with O(k) vertices and edges. You may use the following theorem: [20 marks]

Theorem 2. Let G = (V, E) be a graph. There is a function $\alpha : V \to \{0, 1\}$ assigning the label 0 or 1 to each vertex in V such that at least |E|/2 edges have one endpoint labeled 0 and the other endpoint labeled 1.

Proof. The proof is by a probabilistic argument. If we randomly label the vertices of G with 0 and 1, the expected number of edges where the endpoints have distinct labels is |E|/2. Therefore, there exists at least one labeling where at least |E|/2 edges have distinct labels on their endpoints. \Box

4. Design an FPT algorithm for MAX CuT with running time $4^k \cdot k^{O(1)} + n^{O(1)}$. [20 marks]

We denote by $G = (A \uplus B, E)$ a bipartite graph whose vertex set is partitioned into two independent sets A and B. Consider the Hall Set problem, which asks for a subset S of at most k vertices in A whose neighborhood is smaller than S.

HALL SET (HS)

Input: A bipartite graph $G = (A \uplus B, E)$ and an integer k

Parameter: k

Question: Is there a set $S \subseteq A$ of size at most k such that |N(S)| < |S|?

• Show that Hall Set is W[1]-hard.

Hints: Reduce from CLIQUE. For a set E' of edges, the set $V(E') = \{u \in e : e \in E'\}$ denotes the set of endpoints of E'. Observe that for a set E' of $\binom{k}{2}$ edges, we have that $|V(E')| \leq k$ if and only if V(E') is a clique of size k.