
1

Interrupts (II)

Lecturer: Sri Parameswaran

Notes by: Annie Guo

2

External Interrupts

⚫ The external interrupts are triggered by the

INT7:0 pins.

⚫ If enabled, the interrupts will trigger even if the

INT7:0 are configured as outputs

⚫ This feature provides a way of generating a software

interrupt.

⚫ Can be triggered by a falling or rising edge or a

logic level

⚫ Specified in External Interrupt Control Register

▪ EICRA (for INT3:0)

▪ EICRB (for INT7:4)

3

External Interrupts (cont.)

⚫ To enable an interrupt, two bits must be set

⚫ I bit in SREG

⚫ INTx bit in EIMSK

⚫ To activate an interrupt, the following must be

met:

⚫ The interrupt must be enabled

⚫ The associated external pin must have a

designed signal asserted.

4

EIMSK

⚫ External Interrupt Mask Register

⚫ A bit is set to enable the related interrupt

5

EICRA
⚫ External Interrupt Control Register A

⚫ For INT0-3

⚫ Defines the type of signals that activates the external

Interrupt

⚫ on rising or falling edge or level sensed.

6

EICRB
⚫ External Interrupt Control Register B

⚫ For INT4-7

⚫ Defines the type of signals that activates the External

Interrupt

⚫ on rising or falling edge or level sensed.

7

EIFR

⚫ Interrupt flag register

⚫ A bit is set when an event-triggered interrupt is

enabled and the related event on the related INT

pin happens.

⚫ Event-triggered interrupt: signal edge activated.

8

Example 1

⚫ Design a system, where the state of LEDs

toggles under the control of the user.

9

Example 1 (solution)

⚫ Use an external interrupt

⚫ Connect the external interrupt pin to a push button

⚫ When the button pressed, the interrupt is generated

⚫ In the assembly code

⚫ Set up the interrupt

⚫ Set up the interrupt vector

⚫ Enable the interrupt

⚫ Write a service routine for this interrupt

⚫ Change the display pattern

⚫ Write the pattern to the port connected to the LEDs

10

Code for Example 1
.include "m2560def.inc“

.def temp =r16

.def output = r17

.def count = r18

.equ PATTERN = 0b01010101

; set up interrupt vectors
jmp RESET

.org INT0addr
jmp EXT_INT0

RESET:
ldi temp, low(RAMEND) ; initialize stack
out SPL, temp
ldi temp, high(RAMEND)
out SPH, temp

ser temp ; set Port C as output
out DDRC, temp
out PORTC, temp
ldi output, PATTERN

; continued

11

Code for Example 1
; continued

ldi temp, (2 << ISC00) ; set INT0 as falling-
sts EICRA, temp ; edge triggered interrupt

in temp, EIMSK ; enable INT0
ori temp, (1<<INT0)
out EIMSK, temp

sei ; enable Global Interrupt
jmp main

EXT_INT0:
push temp ; save register
in temp, SREG ; save SREG
push temp

com output ; flip the pattern
out PORTC, output
inc count

pop temp ; restore SREG
out SREG, temp
pop temp ; restore register
reti

12

Code for Example 1
; continued

; main - does nothing but increment a counter
main:

clr count
clr temp

loop:
inc temp ; a dummy task in main
rjmp loop

13

Timer/Counters

⚫ Simply binary counters

⚫ Used in two different modes:
⚫ Timer

⚫ Counting time periods

⚫ Counter

⚫ Counting the events or pulse or something of this nature

⚫ Can be used to
⚫ Measure time periods, speed, frequency

⚫ Generate PWM signals

⚫ Schedule real-time tasks

⚫ etc.

14

Timer/Counters in AVR

⚫ In AVR, there are 8-bit and 16-bit

timer/counters.

⚫ Timer 0 and Timer 2: 8-bit

⚫ Timer 1,3-5 16-bit

15

8-bit Timer/Counter Block

Diagram

16

8-bit Timer/Counter

⚫ The counter can be initialized with

⚫ 0 (controlled by reset)

⚫ a number (controlled by count signal)

⚫ Can count up or down

⚫ controlled by direction signal

⚫ Those controlled signals are generated by hardware control
logic

⚫ The control logic is further controlled by programmer by

⚫ Writing control bits into TCCRnA/TCCRnB

⚫ Output

⚫ Overflow interrupt request bit

⚫ Output Compare interrupt request bit

⚫ OCn bit: Output Compare bit for waveform generation

17

TIMSK0

⚫ Timer/Counter Interrupt Mask Register

⚫ Set TOIE0 (and I-bit in SREG) to enable the

Overflow Interrupt

⚫ Set OCIE0(A/B) (and I bit in SREG) to enable

Compare Match Interrupt

Control bits for timer/counter0

18

TIFR0
⚫ Timer/Counter Interrupt Flag Register

⚫ OCF0(A/B) bit is set when a Compare Match between the

counter and the data in OCR0(A/B) (Output Compare

Registers).

⚫ When (I=1)&&(OCIE0(A/B)=1)&&(OCF0(A/B)=1), the

related Timer/Counter Compare Match Interrupt is

executed.

⚫ OCF0(A/B) bit is cleared by hardware when the related

interrupt is handled or can be cleared by writing a logic 0 to

the flag

Interrupt control bits for timer/counter0

19

TIFR0 (cont.)
⚫ Timer/Counter Interrupt Flag Register

⚫ TOV0 bit is set when an overflow occurs in the counter.

⚫ When (I=1)&&(TOIE0=1)&&(TOV0=1), the related

Timer/Counter Overflow Interrupt is executed.

⚫ In PWM mode, this bit is set when the counter changes

counting direction at 0x00

⚫ OCF0(A/B) bit is cleared by hardware when the related

interrupt is handled or can be cleared by writing a logic 0 to

the flag

Interrupt control bits for timer/counter0

20

TCCR0A/B

⚫ Timer Counter Control Register

⚫ For Timer/Counter0

⚫ Similar registers for other timers

21

TCCR0 Bit Description

⚫ COM0xn/WGM0n/FOC0

⚫ Control the mode of operation

⚫ The behavior of the Timer/Counter and the output, is defined by

the combination of the Waveform Generation mode (WGM02:00)

and Compare Output mode (COM0x1:0) bits.

⚫ The simplest mode of operation is the Normal Mode (WGM02:00

=00). In this mode the counting direction is always up. The

counter rolls over when it passes its maximum 8-bit value (TOP =

0xFF) and then restarts from the bottom (0x00).

⚫ Refer to Mega2560 Data Sheet (pages 118~194) for details.

22

TCCR0 Bit Description (cont.)
⚫ Bit 2:0 in TCCR0B

⚫ Control the clock selection

23

Example 2

⚫ Implement a scheduler that can execute a

task every one second.

24

Example 2 (solution)

⚫ Use Timer0 to count the time

⚫ Let’s set Timer0 prescaler to 8

⚫ The time-out for the setting should be
▪ 256*(clock period) = 256*8/(16 MHz)

= 128 us

▪ Namely, we can set the Timer0 overflow interrupt that is to occur every
128 us.

▪ Note, Clktos = 1/16 MHz (obtained from the data sheet)

⚫ For one second, there are
▪ 1000000/128 = ~7812 interrupts

⚫ In code,

⚫ Set Timer0 interrupt to occur every 128 microseconds

⚫ Use a counter to count to 7812 interrupts for counting 1 second

⚫ To observe the 1 second time period, toggle an LED every
second.

25

Example 3
; This program implements a timer that counts one second using

; Timer0 interrupt

.include "m2560def.inc"

.equ PATTERN = 0b11110000

.def temp = r16

.def leds = r17

; The macro clears a word (2 bytes) in a memory

; the parameter @0 is the memory address for that word

.macro clear

ldi YL, low(@0) ; load the memory address to Y

ldi YH, high(@0)

clr temp

st Y+, temp ; clear the two bytes at @0 in SRAM

st Y, temp

.endmacro

; contined

26

Example 3
; continued
.dseg
SecondCounter:

.byte 2 ; Two-byte counter for counting seconds.
TempCounter:

.byte 2 ; Temporary counter. Used to determine
; if one second has passed

.cseg

.org 0x0000
jmp RESET
jmp DEFAULT ; No handling for IRQ0.
jmp DEFAULT ; No handling for IRQ1.

.org OVF0addr
jmp Timer0OVF ; Jump to the interrupt handler for

; Timer0 overflow.
…
jmp DEFAULT ; default service for all other interrupts.

DEFAULT: reti ; no service
; continued

27

Example 3

; continued

RESET: ldi temp, high(RAMEND) ; Initialize stack pointer

out SPH, temp

ldi temp, low(RAMEND)

out SPL, temp

ser temp ; set Port C as output

out DDRC, temp

rjmp main

; continued

28

Example 3

; continued

Timer0OVF: ; interrupt subroutine to Timer0

in temp, SREG

push temp ; Prologue starts.

push YH ; Save all conflict registers in the prologue.

push YL

push r25

push r24 ; Prologue ends.

; Load the value of the temporary counter.

lds r24, TempCounter

lds r25, TempCounter+1

adiw r25:r24, 1 ; Increase the temporary counter by one.

; continued

29

Example 3

cpi r24, low(7812) ; Check if (r25:r24) = 7812

ldi temp, high(7812) ; 7812 = 106/128

cpc r25, temp

brne NotSecond

com leds

out PORTC, leds

clear TempCounter ; Reset the temporary counter.

; Load the value of the second counter.

lds r24, SecondCounter

lds r25, SecondCounter+1

adiw r25:r24, 1 ; Increase the second counter by one.

; continued

30

Example 3
sts SecondCounter, r24

sts SecondCounter+1, r25

rjmp EndIF

NotSecond:

; Store the new value of the temporary counter.

sts TempCounter, r24

sts TempCounter+1, r25

EndIF:

pop r24 ; Epilogue starts;

pop r25 ; Restore all conflict registers from the stack.

pop YL

pop YH

pop temp

out SREG, temp

reti ; Return from the interrupt.
; continued

31

Example 3

main:

ldi leds, 0xFF

out PORTC, leds

ldi leds, PATTERN

clear TempCounter ; Initialize the temporary counter to 0

clear SecondCounter ; Initialize the second counter to 0

ldi temp, 0b00000000

out TCCR0A, temp

ldi temp, 0b00000010

out TCCR0B, temp ; Prescaling value=8

ldi temp, 1<<TOIE0 ; = 128 microseconds

sts TIMSK0, temp ; T/C0 interrupt enable

sei ; Enable global interrupt

loop: rjmp loop ; loop forever

32

Reading Material

⚫ Chapter 8: Interrupts and Real-Time Events.

Microcontrollers and Microcomputers by

Fredrick M. Cady.

⚫ Mega2560 Data Sheet.

⚫ External Interrupts.

⚫ Timer0

33

Homework

1. What do you need to do to set up an Timer0

Output Compare Match Interrupt?

34

Homework

2. Based on the Example 1 in this week lecture

slides, implement a software interrupt such

that when there is an overflow in the counter

that counts the number of LED toggles, all

LEDs are turned on.

