
7. Parameterized branching algorithms

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2015

Contents

1 Running time analysis 1

2 Feedback Vertex Set 2

3 Maximum Leaf Spanning Tree 3

4 Further Reading 6

1 Running time analysis

Search trees
Recall: A search tree models the recursive calls of an algorithm. For a b-way branching where the parameter k

decreases by a at each recursive call, the number of nodes is at most bk/a · (k/a+ 1).

k

k − a

k − 2a k − 2a

k − a

k − 2a k − 2a
...

≤ k/a+ 1

≤ bk/a

If k/a and b are upper bounded by a function of k, and the time spent at each node is FPT (typically, polynomial),
then we get an FPT running time.

Recall: Measure Based Analysis
For more precise running time upper bounds:

Lemma 1 (Measure Analysis Lemma). Let

• A be a branching algorithm

• c ≥ 0 be a constant, and

• µ(·), η(·) be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I1, . . . , Ik, but, besides the recursive calls, uses time
O(|I|c), such that

(∀i) η(Ii) ≤ η(I)− 1, and (1)

2µ(I1) + . . .+ 2µ(Ik) ≤ 2µ(I). (2)

Then A solves any instance I in time O(η(I)c+1) · 2µ(I).

1

2 Feedback Vertex Set

A feedback vertex set of a multigraph G = (V,E) is a set of vertices S ⊆ V such that G− S is acyclic.

Feedback Vertex Set
Input: Multigraph G = (V,E), integer k
Parameter: k
Question: Does G have a feedback vertex set of size at most k?

Simplification Rules
We apply the first applicable1 simplification rule.

(Loop)
If G has a loop vv ∈ E, then set G← G− v and k ← k − 1.

(Multiedge)
If E contains an edge uv more than twice, remove all but two copies of uv.

(Degree-1)
If ∃v ∈ V with dG(v) ≤ 1, then set G← G− v.

(Budget-exceeded)
If k < 0, then return No.

(Degree-2)
If ∃v ∈ V with dG(v) = 2, then denote NG(v) = {u,w} and set G← G′ = (V \ {v}, (E \ {vu, vw}) ∪ {uw}).

Lemma 2. (Degree-2) is sound.

Proof. Suppose S is a feedback vertex set of G of size at most k. Let

S′ =

{
S if v /∈ S
(S \ {v}) ∪ {u} if v ∈ S.

Now, |S′| ≤ k and S′ is a feedback vertex set of G′ since every cycle in G′ corresponds to a cycle in G, with,
possibly, the edge uw replaced by the path (u, v, w).

Suppose S′ is a feedback vertex set of G′ of size at most k. Then, S′ is also a feedback vertex set of G.

Remaining issues

• A select–discard branching decreases k in only one branch

• One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by
any function of k

Idea:

• An acyclic graph has average degree < 2

• After applying simplification rules, G has average degree ≥ 3

• The selected feeback vertex set needs to be incident to many edges

• Does a feedback vertex set of size at most k contain at least one vertex among the f(k) vertices of highest
degree?

1A simplification rule is applicable if it modifies the instance.

2

The fvs needs to be incident to many edges

Lemma 3. If S is a feedback vertex set of G = (V,E), then∑
v∈S

(dG(v)− 1) ≥ |E| − |V |+ 1

Proof. Since F = G− S is acyclic, |E(F)| ≤ |V | − |S| − 1. Since every edge in E \ E(F) is incident with a vertex
of S, we have

|E| = |E| − |E(F)|+ |E(F)|

≤

(∑
v∈S

dG(v)

)
+ (|V | − |S| − 1)

=

(∑
v∈S

(dG(v)− 1)

)
+ |V | − 1.

The fvs needs to contain a high-degree vertex

Lemma 4. Let G be a graph with minimum degree at least 3 and let H denote a set of 3k vertices of highest degree
in G. Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof. Suppose not. Let S be a feedback vertex set with |S| ≤ k and S ∩H = ∅. Then,

2|E| − |V | =
∑
v∈V

(dG(v)− 1)

=
∑
v∈H

(dG(v)− 1) +
∑

v∈V \H

(dG(v)− 1)

≥ 3 · (
∑
v∈S

(dG(v)− 1)) +
∑
v∈S

(dG(v)− 1)

≥ 4 · (|E| − |V |+ 1)

⇔ 3|V | ≥ 2|E|+ 4.

But this contradicts the fact that every vertex of G has degree at least 3.

Algorithm for Feedback Vertex Set

Theorem 5. Feedback Vertex Set can be solved in O∗((3k)k) time.

Proof (sketch). • Exhaustively apply the simplification rules.

• The branching rule computes H of size 3k, and branches into subproblems (G− v, k − 1) for each v ∈ H.

3 Maximum Leaf Spanning Tree

A leaf of a tree is a vertex with degree 1. A spanning tree in a graph G = (V,E) is a subgraph of G that is a tree
and has |V | vertices.

Maximum Leaf Spanning Tree
Input: connected graph G, integer k
Parameter: k
Question: Does G have a spanning tree with at least k leaves?

3

Property
A k-leaf tree in G is a subgraph of G that is a tree with at least k leaves. A k-leaf spanning tree in G is a

spanning tree in G with at least k leaves.

Lemma 6. Let G = (V,E) be a connected graph. G has a k-leaf tree ⇔ G has a k-leaf spanning tree.

Proof. (⇐): trivial
(⇒): Let T be a k-leaf tree in G. By induction on x := |V | − |V (T)|, we will show that T can be extended to a

k-leaf spanning tree in G.
Base case: x = 0 X.
Induction: x > 0, and assume the claim is true for all x′ < x. Choose uv ∈ E such that u ∈ V (T) and v /∈ V (T).
Since T ′ := (V (T) ∪ {v}, E(T) ∪ {uv}) has ≥ k leaves and < x external vertices, it can be extended to a k-leaf
spanning tree in G by the induction hypothesis.

Strategy

• The branching algorithm will check whether G has a k-leaf tree.

• A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.

• “Guess” an internal vertex r, i.e., do a |V |-way branching fixing an initial internal vertex r.

• In any branch, the algorithm has computed

– T – a tree in G

– I – the internal vertices of T , with r ∈ I
– B – a subset of the leaves of T where T may be extended: the boundary set

– L – the remaining leaves of T

– X – the external vertices V \ V (T)

• The question is whether T can be extended to a k-leaf tree where all the vertices in L are leaves.

Simplification Rules
Apply the first applicable simplification rule:

(Halt-Yes)
If |L|+ |B| ≥ k, then return Yes.

(Halt-No)
If |B| = 0, then return No.

(Non-extendable)
If ∃v ∈ B with NG(v) ∩X = ∅, then move v to L.

Branching Lemma

Lemma 7 (Branching Lemma). Suppose u ∈ B and there exists a k-leaf tree T ′ extending T where u is an internal
vertex. Then, there exists a k-leaf tree T ′′ extending (V (T) ∪NG(u), E(T) ∪ {uv : v ∈ NG(u) ∩X}).

Proof. Start from T ′′ ← T ′ and perform the following operation for each v ∈ NG(u) ∩X.
If v /∈ V (T ′), then add he vertex v and the edge uv. Otherwise, add the edge uv, creating a cycle C in T and

remove the other edge of C incident to v. This does not decrease the number of leaves, since it only increases the
number of edges incident to u, and u was already internal.

Follow Path Lemma

Lemma 8 (Follow Path Lemma). Suppose u ∈ B and |NG(u) ∩ X| = 1. Let NG(u) ∩ X = {v}. If there exists
a k-leaf tree extending T where u is internal, but no k-leaf tree extending T where u is a leaf, then there exists a
k-leaf tree extending T where both u and v are internal.

Proof. Suppose not, and let T ′ be a k-leaf tree extending T where u is internal and v is a leaf. But then, T − v is
a k-leaf tree as well.

4

Algorithm

• Apply simplification rules

• Select u ∈ B. Branch into

– u ∈ L
– u ∈ I. In this case, add X ∩NG(u) to B (Branching Lemma). In the special case where |X ∩NG(u)| = 1,

denote {v} = X ∩ NG(u), make v internal, and add NG(v) ∩ X to B, continuing the same way until
reaching a vertex with at least 2 neighbors in X (Follow Path Lemma).

• In one branch, a vertex moves from B to L; in the other branch, |B| increases by at least 1.

Running time analysis

• Measure µ := 2k − 2|L| − |B| ≥ 0.

• Branch where u ∈ L:

– |B| decreases by 1, |L| increases by 1

– µ decreases by 1

• Branch where u ∈ I.

– u moves from B to I

– ≥ 2 vertices move from X to B

– µ decreases by at least 1

• Binary search tree

• Height ≤ µ ≤ 2k

Result for Maximum Leaf Spanning Tree

Theorem 9 ([Kneis, Langer, Rossmanith, 2011]). Maximum Leaf Spanning Tree can be solved in O∗(4k) time.

Current best: O∗(3.72k) [Daligault, Gutin, Kim, Yeo, 2010]

Exercise 1
Recall:
An independent set in a graph G = (V,E) is a set of vertices S ⊆ V such that G[S] has no edge.
∆(G) denotes the maximum degree of G.

Sol+∆-Independent Set

Input: graph G, integer k
Parameter: k + ∆(G)
Question: Does G have an independent set of size at least k?

• Show that Sol+∆-Independent Set is FPT.

Hint: We may restrict our attention to maximal independent sets, where we know: every maximal independent set
contains at least one vertex from NG[v], where v is any vertex of G.

5

Solution sketch

• Select a vertex v ∈ V

• Do a (dG(v)+1)-way branching, recursively checking for each u ∈ NG[v], whetherG−NG[u] has an independent
set of size at least k − 1

• Since k decreases by at least 1 in each branch, and the number of branches is at most ∆(G) + 1, we obtain a
running time of O∗((∆(G) + 1)k)

• This is an FPT algorithm

Exercise 2
A cluster graph is a graph where every connected component is a complete graph.

Cluster Editing
Input: Graph G = (V,E), integer k
Parameter: k
Question: Is it possible to edit (add or delete) at most k edges of G so that it becomes a cluster graph?

Recall that G is a cluster graph iff G contains no induced P3 (path with 3 vertices) and has a kernel with O(k2)
vertices.

1. Design an algorithm for Cluster Editing with running time 3k · kO(1) + nO(1).

Solution sketch

• Kernelize to obtain an equivalent instance (G′, k′) on O(k2) vertices in nO(1) time

• As a branching strategy, select an induced P3 (u, v, w) and recursively check whether any of the following
graphs can be edited into a cluster graph with at most k− 1 edge edits: the graph where we remove the edge
uv, the graph where we remove the edge vw, and the graph where we add the edge uw to G′.

4 Further Reading

• Chapter 3, Bounded Search Trees in Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer,
2015.

• Chapter 3, Bounded Search Trees in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parame-
terized Complexity. Springer, 2013.

• Chapter 8, Depth-Bounded Search Trees in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms.
Oxford University Press, 2006.

6

	Running time analysis
	Feedback Vertex Set
	Maximum Leaf Spanning Tree
	Further Reading

