7. Parameterized branching algorithms
COMP6741: Parameterized and Exact Computation

Serge Gaspers
Semester 2, 2015

Contents

1 Running time analysis 1
2 Feedback Vertex Set 2
3 Maximum Leaf Spanning Tree 3
4 Further Reading 6

1 Running time analysis

Search trees
Recall: A search tree models the recursive calls of an algorithm. For a \(b \)-way branching where the parameter \(k \) decreases by \(a \) at each recursive call, the number of nodes is at most \(b^{k/a} \cdot (k/a + 1) \).

If \(k/a \) and \(b \) are upper bounded by a function of \(k \), and the time spent at each node is FPT (typically, polynomial), then we get an FPT running time.

Recall: Measure Based Analysis
For more precise running time upper bounds:

Lemma 1 (Measure Analysis Lemma). Let

- \(A \) be a branching algorithm
- \(c \geq 0 \) be a constant, and
- \(\mu(\cdot), \eta(\cdot) \) be two measures for the instances of \(A \),

such that on input \(I \), \(A \) calls itself recursively on instances \(I_1, \ldots, I_k \), but, besides the recursive calls, uses time \(O(|I|^c) \), such that

\[
\forall i \quad \eta(I_i) \leq \eta(I) - 1, \quad \text{and} \quad 2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \leq 2^{\mu(I)}.
\]

Then \(A \) solves any instance \(I \) in time \(O(\eta(I)^{c+1}) \cdot 2^{\mu(I)} \).
2 Feedback Vertex Set

A feedback vertex set of a multigraph $G = (V, E)$ is a set of vertices $S \subseteq V$ such that $G - S$ is acyclic.

Feedback Vertex Set
- Input: Multigraph $G = (V, E)$, integer k
- Parameter: k
- Question: Does G have a feedback vertex set of size at most k?

Simplification Rules
We apply the first applicable simplification rule.

(Loop)
If G has a loop $vv \in E$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

(Multiedge)
If E contains an edge uv more than twice, remove all but two copies of uv.

(Degree-1)
If $\exists v \in V$ with $d_G(v) \leq 1$, then set $G \leftarrow G - v$.

(Budget-exceeded)
If $k < 0$, then return No.

(Degree-2)
If $\exists v \in V$ with $d_G(v) = 2$, then denote $N_G(v) = \{u, w\}$ and set $G \leftarrow G' = (V \setminus \{v\}, (E \setminus \{vu, vw\}) \cup \{uw\})$.

Lemma 2. (Degree-2) is sound.

Proof. Suppose S is a feedback vertex set of G of size at most k. Let

$$S' = \begin{cases} S & \text{if } v \notin S \\ (S \setminus \{v\}) \cup \{u\} & \text{if } v \in S. \end{cases}$$

Now, $|S'| \leq k$ and S' is a feedback vertex set of G' since every cycle in G' corresponds to a cycle in G, with, possibly, the edge uw replaced by the path (u, v, w).

Suppose S' is a feedback vertex set of G' of size at most k. Then, S' is also a feedback vertex set of G. \qed

Remaining issues
- A select–discard branching decreases k in only one branch
- One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by any function of k
- A simplification rule is applicable if it modifies the instance.
The fvs needs to be incident to many edges

Lemma 3. If S is a feedback vertex set of $G = (V, E)$, then

$$\sum_{v \in S} (d_G(v) - 1) \geq |E| - |V| + 1$$

Proof. Since $F = G - S$ is acyclic, $|E(F)| \leq |V| - |S| - 1$. Since every edge in $E \setminus E(F)$ is incident with a vertex of S, we have

$$|E| = |E| - |E(F)| + |E(F)|$$

$$\leq \left(\sum_{v \in S} d_G(v) \right) + (|V| - |S| - 1)$$

$$= \left(\sum_{v \in S} (d_G(v) - 1) \right) + |V| - 1.$$

The fvs needs to contain a high-degree vertex

Lemma 4. Let G be a graph with minimum degree at least 3 and let H denote a set of $3k$ vertices of highest degree in G. Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof. Suppose not. Let S be a feedback vertex set with $|S| \leq k$ and $S \cap H = \emptyset$. Then,

$$2|E| - |V| = \sum_{v \in V} (d_G(v) - 1)$$

$$= \sum_{v \in H} (d_G(v) - 1) + \sum_{v \in V \setminus H} (d_G(v) - 1)$$

$$\geq 3 \cdot \left(\sum_{v \in S} (d_G(v) - 1) \right) + \sum_{v \in S} (d_G(v) - 1)$$

$$\geq 4 \cdot (|E| - |V| + 1)$$

$$\Leftrightarrow 3|V| \geq 2|E| + 4.$$

But this contradicts the fact that every vertex of G has degree at least 3.

Algorithm for Feedback Vertex Set

Theorem 5. Feedback Vertex Set can be solved in $O^*((3k)^k)$ time.

Proof (sketch).

- Exhaustively apply the simplification rules.
- The branching rule computes H of size $3k$, and branches into subproblems $(G - v, k - 1)$ for each $v \in H$.

3 Maximum Leaf Spanning Tree

A leaf of a tree is a vertex with degree 1. A spanning tree in a graph $G = (V, E)$ is a subgraph of G that is a tree and has $|V|$ vertices.

<table>
<thead>
<tr>
<th>Maximum Leaf Spanning Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: connected graph G, integer k</td>
</tr>
<tr>
<td>Parameter: k</td>
</tr>
<tr>
<td>Question: Does G have a spanning tree with at least k leaves?</td>
</tr>
</tbody>
</table>
Property
A k-leaf tree in G is a subgraph of G that is a tree with at least k leaves. A k-leaf spanning tree in G is a spanning tree in G with at least k leaves.

Lemma 6. Let $G = (V, E)$ be a connected graph. G has a k-leaf tree $\iff G$ has a k-leaf spanning tree.

Proof. (\Rightarrow): trivial
(\Leftarrow): Let T be a k-leaf tree in G. By induction on $x := |V| - |V(T)|$, we will show that T can be extended to a k-leaf spanning tree in G.
Base case: $x = 0$.
Induction: $x > 0$, and assume the claim is true for all $x' < x$. Choose $uv \in E$ such that $u \in V(T)$ and $v \notin V(T)$. Since $T' := (V(T) \cup \{v\}, E(T) \cup \{uv\})$ has $\geq k$ leaves and $< x$ external vertices, it can be extended to a k-leaf spanning tree in G by the induction hypothesis.

Strategy
- The branching algorithm will check whether G has a k-leaf tree.
- A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.
- “Guess” an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.
- In any branch, the algorithm has computed
 - T - a tree in G
 - I - the internal vertices of T, with $r \in I$
 - B - a subset of the leaves of T where T may be extended: the boundary set
 - L - the remaining leaves of T
 - X - the external vertices $V \setminus V(T)$
- The question is whether T can be extended to a k-leaf tree where all the vertices in L are leaves.

Simplification Rules
Apply the first applicable simplification rule:

(Halt-Yes)
If $|L| + |B| \geq k$, then return Yes.

(Halt-No)
If $|B| = 0$, then return No.

(Non-extendable)
If $\exists v \in B$ with $N_G(v) \cap X = \emptyset$, then move v to L.

Branching Lemma
Lemma 7 (Branching Lemma). Suppose $u \in B$ and there exists a k-leaf tree T' extending T where u is an internal vertex. Then, there exists a k-leaf tree T'' extending $(V(T) \cup N_G(u), E(T) \cup \{uv : v \in N_G(u) \cap X\})$.

Proof. Start from $T'' \leftarrow T'$ and perform the following operation for each $v \in N_G(u) \cap X$.
If $v \notin V(T')$, then add the vertex v and the edge uv. Otherwise, add the edge uv, creating a cycle C in T and remove the other edge of C incident to v. This does not decrease the number of leaves, since it only increases the number of edges incident to u, and u was already internal.

Follow Path Lemma
Lemma 8 (Follow Path Lemma). Suppose $u \in B$ and $|N_G(u) \cap X| = 1$. Let $N_G(u) \cap X = \{v\}$. If there exists a k-leaf tree extending T where u is internal, but no k-leaf tree extending T where u is a leaf, then there exists a k-leaf tree extending T where both u and v are internal.

Proof. Suppose not, and let T' be a k-leaf tree extending T where u is internal and v is a leaf. But then, $T - v$ is a k-leaf tree as well.
Algorithm

- Apply simplification rules
- Select $u \in B$. Branch into
 - $u \in L$
 - $u \in I$. In this case, add $X \cap N_G(u)$ to B (Branching Lemma). In the special case where $|X \cap N_G(u)| = 1$, denote $\{v\} = X \cap N_G(u)$, make v internal, and add $N_G(v) \cap X$ to B, continuing the same way until reaching a vertex with at least 2 neighbors in X (Follow Path Lemma).

- In one branch, a vertex moves from B to L; in the other branch, $|B|$ increases by at least 1.

Running time analysis

- Measure $\mu := 2k - 2|L| - |B| \geq 0$.
- Branch where $u \in L$:
 - $|B|$ decreases by 1, $|L|$ increases by 1
 - μ decreases by 1
- Branch where $u \in I$.
 - u moves from B to I
 - ≥ 2 vertices move from X to B
 - μ decreases by at least 1

- Binary search tree
- Height $\leq \mu \leq 2k$

Result for Maximum Leaf Spanning Tree

Theorem 9 ([Kneis, Langer, Rossmanith, 2011]). **Maximum Leaf Spanning Tree** *can be solved in $O^*(4^k)$ time.*

Current best: $O^*(3.72^k)$ [Daligault, Gutin, Kim, Yeo, 2010]

Exercise 1

Recall:

An *independent set* in a graph $G = (V,E)$ is a set of vertices $S \subseteq V$ such that $G[S]$ has no edge. $\Delta(G)$ denotes the maximum degree of G.

<table>
<thead>
<tr>
<th>Sol+Δ-Independent Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: graph G, integer k</td>
</tr>
<tr>
<td>Parameter: $k + \Delta(G)$</td>
</tr>
<tr>
<td>Question: Does G have an independent set of size at least k?</td>
</tr>
</tbody>
</table>

- Show that **Sol+Δ-Independent Set** is FPT.

Hint: We may restrict our attention to *maximal* independent sets, where we know: every maximal independent set contains at least one vertex from $N_G[v]$, where v is any vertex of G.

Solution sketch

• Select a vertex $v \in V$

• Do a $(d_G(v)+1)$-way branching, recursively checking for each $u \in N_G[v]$, whether $G - N_G[u]$ has an independent set of size at least $k - 1$

• Since k decreases by at least 1 in each branch, and the number of branches is at most $\Delta(G) + 1$, we obtain a running time of $O^*((\Delta(G) + 1)^k)$

• This is an FPT algorithm

Exercise 2

A cluster graph is a graph where every connected component is a complete graph.

<table>
<thead>
<tr>
<th>CLUSTER EDITING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Parameter:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
</tbody>
</table>

Recall that G is a cluster graph iff G contains no induced P_3 (path with 3 vertices) and has a kernel with $O(k^2)$ vertices.

1. Design an algorithm for CLUSTER EDITING with running time $3^k \cdot k^{O(1)} + n^{O(1)}$.

Solution sketch

• Kernelize to obtain an equivalent instance (G', k') on $O(k^2)$ vertices in $n^{O(1)}$ time

• As a branching strategy, select an induced P_3 (u, v, w) and recursively check whether any of the following graphs can be edited into a cluster graph with at most $k - 1$ edge edits: the graph where we remove the edge uv, the graph where we remove the edge vw, and the graph where we add the edge uw to G'.

4 Further Reading

