7. Parameterized branching algorithms

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2015

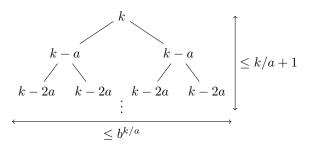
Contents

1 Running time analysis
2 Feedback Vertex Set
2
3 Maximum Leaf Spanning Tree
3
4 Further Reading
6

1 Running time analysis

Search trees

Recall: A search tree models the recursive calls of an algorithm. For a b-way branching where the parameter k decreases by a at each recursive call, the number of nodes is at most $b^{k/a} \cdot (k/a + 1)$.



If k/a and b are upper bounded by a function of k, and the time spent at each node is FPT (typically, polynomial), then we get an FPT running time.

Recall: Measure Based Analysis

For more precise running time upper bounds:

Lemma 1 (Measure Analysis Lemma). Let

- A be a branching algorithm
- \bullet $c \geq 0$ be a constant, and
- $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(|I|^c)$, such that

$$(\forall i) \quad \eta(I_i) \le \eta(I) - 1, \text{ and} \tag{1}$$

$$2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \le 2^{\mu(I)}. \tag{2}$$

Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$.

2 Feedback Vertex Set

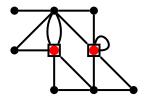
A feedback vertex set of a multigraph G = (V, E) is a set of vertices $S \subseteq V$ such that G - S is acyclic.

FEEDBACK VERTEX SET

Input: Multigraph G = (V, E), integer k

Parameter: k

Question: Does G have a feedback vertex set of size at most k?



Simplification Rules

We apply the first $applicable^1$ simplification rule.

(Loop)

If G has a loop $vv \in E$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

(Multiedge)

If E contains an edge uv more than twice, remove all but two copies of uv.

(Degree-1)

If $\exists v \in V$ with $d_G(v) < 1$, then set $G \leftarrow G - v$.

(Budget-exceeded)

If k < 0, then return No.

(Degree-2)

If $\exists v \in V$ with $d_G(v) = 2$, then denote $N_G(v) = \{u, w\}$ and set $G \leftarrow G' = (V \setminus \{v\}, (E \setminus \{vu, vw\}) \cup \{uw\})$.

Lemma 2. (Degree-2) is sound.

Proof. Suppose S is a feedback vertex set of G of size at most k. Let

$$S' = \begin{cases} S & \text{if } v \notin S \\ (S \setminus \{v\}) \cup \{u\} & \text{if } v \in S. \end{cases}$$

Now, $|S'| \leq k$ and S' is a feedback vertex set of G' since every cycle in G' corresponds to a cycle in G, with, possibly, the edge uw replaced by the path (u, v, w).

Suppose S' is a feedback vertex set of G' of size at most k. Then, S' is also a feedback vertex set of G. \Box

Remaining issues

- \bullet A select–discard branching decreases k in only one branch
- \bullet One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by any function of k

Idea:

- An acyclic graph has average degree < 2
- After applying simplification rules, G has average degree ≥ 3
- The selected feeback vertex set needs to be incident to many edges
- Does a feedback vertex set of size at most k contain at least one vertex among the f(k) vertices of highest degree?

¹A simplification rule is *applicable* if it modifies the instance.

The fvs needs to be incident to many edges

Lemma 3. If S is a feedback vertex set of G = (V, E), then

$$\sum_{v \in S} (d_G(v) - 1) \ge |E| - |V| + 1$$

Proof. Since F = G - S is acyclic, $|E(F)| \le |V| - |S| - 1$. Since every edge in $E \setminus E(F)$ is incident with a vertex of S, we have

$$|E| = |E| - |E(F)| + |E(F)|$$

$$\leq \left(\sum_{v \in S} d_G(v)\right) + (|V| - |S| - 1)$$

$$= \left(\sum_{v \in S} (d_G(v) - 1)\right) + |V| - 1.$$

The fvs needs to contain a high-degree vertex

Lemma 4. Let G be a graph with minimum degree at least 3 and let H denote a set of 3k vertices of highest degree in G. Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof. Suppose not. Let S be a feedback vertex set with $|S| \leq k$ and $S \cap H = \emptyset$. Then,

$$\begin{split} 2|E| - |V| &= \sum_{v \in V} (d_G(v) - 1) \\ &= \sum_{v \in H} (d_G(v) - 1) + \sum_{v \in V \backslash H} (d_G(v) - 1) \\ &\geq 3 \cdot (\sum_{v \in S} (d_G(v) - 1)) + \sum_{v \in S} (d_G(v) - 1) \\ &\geq 4 \cdot (|E| - |V| + 1) \\ \Leftrightarrow \quad 3|V| \geq 2|E| + 4. \end{split}$$

But this contradicts the fact that every vertex of G has degree at least 3.

Algorithm for Feedback Vertex Set

Theorem 5. FEEDBACK VERTEX SET can be solved in $O^*((3k)^k)$ time.

Proof (sketch). • Exhaustively apply the simplification rules.

• The branching rule computes H of size 3k, and branches into subproblems (G - v, k - 1) for each $v \in H$.

3 Maximum Leaf Spanning Tree

A leaf of a tree is a vertex with degree 1. A spanning tree in a graph G = (V, E) is a subgraph of G that is a tree and has |V| vertices.

MAXIMUM LEAF SPANNING TREE

Input: connected graph G, integer k

Parameter: k

Question: Does G have a spanning tree with at least k leaves?

Property

A k-leaf tree in G is a subgraph of G that is a tree with at least k leaves. A k-leaf spanning tree in G is a spanning tree in G with at least k leaves.

Lemma 6. Let G = (V, E) be a connected graph. G has a k-leaf tree $\Leftrightarrow G$ has a k-leaf spanning tree.

Proof. (\Leftarrow) : trivial

(⇒): Let T be a k-leaf tree in G. By induction on x := |V| - |V(T)|, we will show that T can be extended to a k-leaf spanning tree in G.

Base case: $x = 0 \checkmark$.

Induction: x > 0, and assume the claim is true for all x' < x. Choose $uv \in E$ such that $u \in V(T)$ and $v \notin V(T)$. Since $T' := (V(T) \cup \{v\}, E(T) \cup \{uv\})$ has $\geq k$ leaves and < x external vertices, it can be extended to a k-leaf spanning tree in G by the induction hypothesis.

Strategy

- \bullet The branching algorithm will check whether G has a k-leaf tree.
- A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.
- "Guess" an internal vertex r, i.e., do a |V|-way branching fixing an initial internal vertex r.
- In any branch, the algorithm has computed
 - T a tree in G
 - I the internal vertices of T, with $r \in I$
 - -B a subset of the leaves of T where T may be extended: the boundary set
 - -L the remaining leaves of T
 - -X the external vertices $V \setminus V(T)$
- The question is whether T can be extended to a k-leaf tree where all the vertices in L are leaves.

Simplification Rules

Apply the first applicable simplification rule:

(Halt-Yes)

If $|L| + |B| \ge k$, then return YES.

(Halt-No)

If |B| = 0, then return No.

(Non-extendable)

If $\exists v \in B$ with $N_G(v) \cap X = \emptyset$, then move v to L.

Branching Lemma

Lemma 7 (Branching Lemma). Suppose $u \in B$ and there exists a k-leaf tree T' extending T where u is an internal vertex. Then, there exists a k-leaf tree T'' extending $(V(T) \cup N_G(u), E(T) \cup \{uv : v \in N_G(u) \cap X\})$.

Proof. Start from $T'' \leftarrow T'$ and perform the following operation for each $v \in N_G(u) \cap X$.

If $v \notin V(T')$, then add he vertex v and the edge uv. Otherwise, add the edge uv, creating a cycle C in T and remove the other edge of C incident to v. This does not decrease the number of leaves, since it only increases the number of edges incident to u, and u was already internal.

Follow Path Lemma

Lemma 8 (Follow Path Lemma). Suppose $u \in B$ and $|N_G(u) \cap X| = 1$. Let $N_G(u) \cap X = \{v\}$. If there exists a k-leaf tree extending T where u is internal, but no k-leaf tree extending T where u is a leaf, then there exists a k-leaf tree extending T where both u and v are internal.

Proof. Suppose not, and let T' be a k-leaf tree extending T where u is internal and v is a leaf. But then, T-v is a k-leaf tree as well.

Algorithm

- Apply simplification rules
- Select $u \in B$. Branch into
 - $-u \in L$
 - $-u \in I$. In this case, add $X \cap N_G(u)$ to B (Branching Lemma). In the special case where $|X \cap N_G(u)| = 1$, denote $\{v\} = X \cap N_G(u)$, make v internal, and add $N_G(v) \cap X$ to B, continuing the same way until reaching a vertex with at least 2 neighbors in X (Follow Path Lemma).
- In one branch, a vertex moves from B to L; in the other branch, |B| increases by at least 1.

Running time analysis

- Measure $\mu := 2k 2|L| |B| \ge 0$.
- Branch where $u \in L$:
 - -|B| decreases by 1, |L| increases by 1
 - $-\mu$ decreases by 1
- Branch where $u \in I$.
 - -u moves from B to I
 - ≥ 2 vertices move from X to B
 - $-\mu$ decreases by at least 1
- Binary search tree
- Height $\leq \mu \leq 2k$

Result for Maximum Leaf Spanning Tree

Theorem 9 ([Kneis, Langer, Rossmanith, 2011]). MAXIMUM LEAF SPANNING TREE can be solved in $O^*(4^k)$ time.

Current best: $O^*(3.72^k)$ [Daligault, Gutin, Kim, Yeo, 2010]

Exercise 1

Recall:

An independent set in a graph G = (V, E) is a set of vertices $S \subseteq V$ such that G[S] has no edge. $\Delta(G)$ denotes the maximum degree of G.

 $Sol+\Delta$ -Independent Set

Input: graph G, integer k

Parameter: $k + \Delta(G)$

Question: Does G have an independent set of size at least k?

• Show that SOL+ Δ -INDEPENDENT SET is FPT.

Hint: We may restrict our attention to maximal independent sets, where we know: every maximal independent set contains at least one vertex from $N_G[v]$, where v is any vertex of G.

Solution sketch

- Select a vertex $v \in V$
- Do a $(d_G(v)+1)$ -way branching, recursively checking for each $u \in N_G[v]$, whether $G-N_G[u]$ has an independent set of size at least k-1
- Since k decreases by at least 1 in each branch, and the number of branches is at most $\Delta(G) + 1$, we obtain a running time of $O^*((\Delta(G) + 1)^k)$
- This is an FPT algorithm

Exercise 2

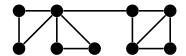
A cluster graph is a graph where every connected component is a complete graph.

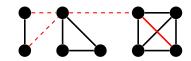
Cluster Editing

Input: Graph G = (V, E), integer k

Parameter: k

Question: Is it possible to edit (add or delete) at most k edges of G so that it becomes a cluster graph?





Recall that G is a cluster graph iff G contains no induced P_3 (path with 3 vertices) and has a kernel with $O(k^2)$ vertices.

1. Design an algorithm for Cluster Editing with running time $3^k \cdot k^{O(1)} + n^{O(1)}$.

Solution sketch

- Kernelize to obtain an equivalent instance (G', k') on $O(k^2)$ vertices in $n^{O(1)}$ time
- As a branching strategy, select an induced P_3 (u, v, w) and recursively check whether any of the following graphs can be edited into a cluster graph with at most k-1 edge edits: the graph where we remove the edge uv, the graph where we remove the edge vw, and the graph where we add the edge vw to vw.

4 Further Reading

- Chapter 3, Bounded Search Trees in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 3, Bounded Search Trees in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Chapter 8, Depth-Bounded Search Trees in Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.