Welcomel
COMP1511 18s1

Programming Fundamentals

COMP1511 18s1
— Lecture 9 —
More Strings

Arerew-Berhett

Jashank Jeremy

<jashank.jeremy@unsw.edu.au>

Before we begin...

introduce yourself to the person sitting next to you

why did they decide to study computing?

after this lecture, you should be able to...

understand how to initialise an array
understand the various ways to initialise a string
have a basic understanding of functions from string.h

understand the basics of working with command line arguments
(i.e. argc and argv)

(note: you shouldn’t be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!) give you the foundations you need to develop these skills. remember: programming is

like learning any other language, it takes consistent and regular practice.)

Don't panic!

week 4 weekly test due friday

don't be scared!

friday this week is a public holiday

if you have a friday tutelab: see course website for details

this week’s lab due friday midsem break
Friday 6th April

assignment 1 due sunday midsem break

you need to start now, if you haven't already

don't forget about help sessions!

see course website for details

Initialising Arrays

initialising arrays is important

(remember yesterday?)

Revisiting: Uninitialised Arrays

the array has not been initialised

int array[SIZE];

int 1 = 0;

while (1 < SIZE) {
printf("%d\n", array[i]);
1++;

what should printf print?
this is undefined behaviour

(there’s no rule in C about what should happen

Revisiting: Uninitialised Arrays

solution: initialise the array first

(note: you could also initialise all the values in a loop)

int array[SIZE] = {0};

int 1 = 0;

while (1 < SIZE) {
printf("%d\n", array[i]);
1++;

Initialising Arrays

there are several ways to initialise an array

using an array initialiser

// array will be filled with all zeroes
int array[SIZE] = {0};

Initialising Arrays

there are several ways to initialise an array

using an array initialiser

// array will be initialised with 1, 2, 3, 4, 5, then the rest 0
int array[SIZE] = {1, 2, 3, 4, 5};

Initialising Arrays

there are several ways to initialise an array

using a loop

int 1 = 0;
while (1 < SIZE) {
array[1] = 1;

}

(this is more flexible and allows you to initialise with values of your choice)

Initialising Strings

we can initialise strings in a similar way

char name[SIZE] = {'A"', 'N', 'D', 'R", "E', "W'};

I I I I I I I I I I I
|AIN|D[R|JE|W[]O]O]|O]O]
[I I | | | I I | | |

o1 11213141516l 7138129

(remember: the remaining elements are initialised with zeroes)

Initialising Strings

there’s a short-hand in C

char name[SIZE] = "ANDREW";

| | | | | | | | | | |
|AINI|D[RIJE|IW[N]|?][?]7?]
| | | | | | | | | | |

o1 1121314151 61718129

Initialising Strings

what happens if we try to set more than will fit?

#define SIZE 2
char name[SIZE] = "ANDREW";

[I I
|AIN|D[RIJE[W[N]|?]?]7?]
[| |

el 12121212021 2121217

Initialising Strings

if we leave the size out, C will automatically make it big enough

char name[] = "ANDREW";

Al N	D[RJE	W[\O				

ol 1121314151 6

Initialising Strings

if we leave the size out, C will automatically make it big enough

char name[] = {'A', 'N', 'D', 'R', "E', '"W'},

I I I I I I I
| Al N|D[RJE]|W]
[I I | | | |

o1 112131415

what'’s the problem here?

try it and see!

Initialising Strings

if we leave the size out, C will automatically make it big enough

char name[] = {'A', 'N', 'D', 'R', "E', "W', '"\Q'};

Al N	D[R]E	W[\O				

ol 1121314151 6

introducing:
command line arguments

Command Line Arguments

“0 or more” strings specified when the program runs

you've already seen these
dcc -o hello hello.c

here, decc is being run with 3 command line arguments:
-0, hello, hello.c

Command Line Arguments

“0 or more” strings specified when the program runs

./hello

the program hello has 0 command line arguments

Command Line Arguments

“0 or more” strings specified when the program runs

./hello some thing goes here

the program hello has 4 command line arguments

Command Line Arguments

we can access these in our program by changing the
signature of the main function

int main (int argc, char *argv[]) {
// code goes here

}

argc stores the number of arguments

argv stores the contents of the arguments

Command Line Arguments

./program hello there

this has two arguments: “hello” and “there”

int main (int argc, char *argv[]) {
// argc 1s 2
printf("%d\n", argc);

// print out all of the arguments

int 1 = 0;

while (1 < argc) {
printf("Argument %d is: %s\n", i, argv[i]);
1++;

argc stores the number of arguments

argv stores the contents of the arguments

fgets(array, array size, stream) reads a line of text

array - char array in which to store the line
array size - the size of the array
stream - where to read the line from, e.g. stdin

fgets won't try to store more than array size chars in the array

never use the function gets ! (why?)

#include <string.h>

// string length (not including ’\0’)

int strlen(char *s);

// string copy

char *strcpy(char *dest, char *src);

char *strncpy(char *dest, char *src, int n);
// string concatenation/append

char *strcat(char *dest, char *src);

char *strncat(char *dest, char *src, int n);

#1nclude <string.h>

// string compare

int strcmp(char *sl1, char *s2);

int strncmp(char *sl1, char *s2, int n);

int strcasecmp(char *sl1, char *s2);

int strncasecmp(char *sl1, char *s2, int n);
// character search

char *strchr(char *s, int c);

char *strrchr(char *s, int c);

