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1 R Median and priority queues

Implement a class Median that allows one to manage a list L of values with the following operations:

• add a value in logarithmic time complexity;

• return the median in constant time complexity.

One possible design is to use two priority queues: a max priority queue to store the half of the
smallest elements, and a min priority queue to store the half of the largest elements. Both priority
queues have the same number of elements if the number of elements in L is even, in which case the
median is the average of the elements at the top of both priority queues. Otherwise, one priority
queue has one more element than the other, and its element at the top is the median.

For the priority queue interface, reimplement priority_queue.py adding two classes, namely,
MaxPriorityQueue and MinPriorityQueue, that both derive from PriorityQueue, and add the
right comparison function.

This implementation of priority_queue.py could contain

if __name__ == ’__main__’:
max_pq = MaxPriorityQueue()
min_pq = MinPriorityQueue()
L = [13, 13, 4, 15, 9, 4, 5, 14, 4, 11, 15, 2, 17, 8, 14, 12, 9, 5, 6, 16]
for e in L:

max_pq.insert(e)
min_pq.insert(e)

print(max_pq._data[ : max_pq._length + 1])
print(min_pq._data[ : min_pq._length + 1])
for i in range(len(L)):

print(max_pq.delete_top_priority(), end = ’ ’)
print()
for i in range(len(L)):

print(min_pq.delete_top_priority(), end = ’ ’)
print()

in which case testing this class would yield:

[None, 17, 16, 15, 13, 15, 5, 14, 13, 6, 14, 11, 2, 4, 4, 8, 12, 9, 4, 5, 9]
[None, 2, 4, 4, 5, 11, 4, 5, 9, 6, 13, 15, 13, 17, 8, 14, 15, 12, 14, 9, 16]
17 16 15 15 14 14 13 13 12 11 9 9 8 6 5 5 4 4 4 2
2 4 4 4 5 5 6 8 9 9 11 12 13 13 14 14 15 15 16 17
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With this in place, the implementation of median.py could contain

if __name__ == ’__main__’:
L = [2, 1, 7, 5, 4, 8, 0, 6, 3, 9]
values = Median()
for e in L:

values.insert(e)
print(values.median(), end = ’ ’)

print()

in which case testing this class would yield:

2 1.5 2 3.5 4 4.5 4 4.5 4 4.5

2 A generalised priority queue

Reimplement priority_queue.py so as to insert pairs of the form (datum, priority). If a pair
is inserted with a datum that already occurs in the priority queue, then the priority is (possibly)
changed to the (possibly) new value. This implementation of priority_queue.py could contain

if __name__ == ’__main__’:
pq = PriorityQueue()
L = [(’A’, 13), (’B’, 13), (’C’, 4), (’D’, 15), (’E’, 9), (’F’, 4), (’G’, 5), (’H’, 14),

(’A’, 4), (’B’, 11), (’C’, 15), (’D’, 2), (’E’, 17),
(’A’, 8), (’B’, 14), (’C’,12), (’D’, 9), (’E’, 5),
(’A’, 6), (’B’, 16)]

for e in L:
pq.insert(e)

for i in range(8):
print(pq.delete(), end = ’ ’)

print()
print(pq.is_empty())

in which case testing this class would yield:

B H C D A G E F
True

2


	red'122 Median and priority queues
	A generalised priority queue

