
Lab 10

COMP9021, Session 2, 2015

1 R Building a general tree

Consider a file named tree.txt containing numbers organised as a tree, a number at a depth of
N in the tree being preceded with N tabs in the file. The file can also contain any number of lines
with nothing but blank lines. Using the module general_tree.py, write a program that reads the
contents of the file. If the file does not contain a proper representation of a tree then the program
outputs an error message; otherwise, it builds the tree (an instance of GeneralTree()) and prints it
out using the same representation as in the file (except for the possible blank lines of course). Here
is a possible interaction:

$ python
...
$ cat tree.txt

2
3

1
4

5
7

8
9

10
11
12

6
1
$ python exercise_1.py
tree.txt does not contain the correct representation of a tree.

1



$ cat tree.txt

2
3

1
4

5
7
8

9

6
$ python exercise_1.py
tree.txt does not contain the correct representation of a tree.
$ cat tree.txt

2
3

1
4

5
7

8
9

10
11
12

6
$ python exercise_1.py
2

3
1

4
5

7
8

9
10
11
12

6
$

2



2 Back to fully parenthesised expressions

Modify the second exercise from Lab 9, that deals with arithmetic expressions written in infix, fully paren-
thesised, and built from natural numbers using the binary +, -, * and / operators, still using a stack but
to build an expression tree rather than to evaluate the expression (that is, representing an expression of
the form (first_argument operator second_argument) as a tree whose value is operator, and whose
left and right nodes are the subtrees that represent first_argument and second_argument, respectively.
The function evaluate() is then reimplemented so as to recursively evaluate the expression from the tree.
Interacting with this program is exactly as with the program from Lab 9.

3


