COMP2111 Week 8 Term 1, 2019 Week 7 recap

Week 7 recap: State machines/Transition systems

Abstractions of step-by-step processes

- Definitions:
 - States and Transitions
 - (Non-)determinism
 - Reachability
 - Safety and Liveness
- The Invariant Principle
- Termination
- Finite automata:
 - DFAs, NFAs
 - Regular languages

Definitions

A **transition system** is a pair (S, \rightarrow) where:

- S is a set (of **states**), and
- $\rightarrow \subseteq S \times S$ is a (transition) relation.
- S may have a designated **start state**, $s_0 \in S$
- S may have designated **final states**, $F \subseteq S$
- The transitions may be **labelled** by elements of a set Λ :
 - $\rightarrow \subseteq S \times \Lambda \times S$
 - $(s, a, s') \in \rightarrow$ is written as $s \stackrel{a}{\rightarrow} s'$
- If \rightarrow is a function we say the system is **deterministic**, in general it is **non-deterministic**

Runs and reachability

Given a transition system (S, \rightarrow) and states $s, s' \in S$,

- a **run** from s is a (possibly infinite) sequence s_1, s_2, \ldots such that $s = s_1$ and $s_i \to s_{i+1}$ for all $i \ge 1$.
- we say s' is **reachable** from s, written $s \to^* s'$, if (s, s') is in the transitive closure of \to .

Safety and Liveness

Common problem (Safety)

Will every run of a transition system avoid a particular state or states? Equivalently, will some run of a transition system reach a particular state or states?

Common problem (Liveness)

Will every run of a transition system reach a particular state or states? Equivalently, will some run of a transition system avoid a particular state or states?

The Invariant Principle (safety)

A **preserved invariant** of a transition system is a unary predicate φ on states such that if $\varphi(s)$ holds and $s \to s'$ then $\varphi(s')$ holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all states reachable from s.

- States: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Transition:
 - $(x, y, r) \rightarrow (x^2, \frac{y}{2}, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, \frac{\bar{y}-1}{2}, rx)$ if y is odd
 - Preserved invariant: rx^y is a constant
- ullet \Rightarrow All states reachable from (m, n, 1) will satisfy $rx^y = m^n$
- ullet \Rightarrow if (x,0,r) is reachable from (m,n,1) then $r=m^n$

- States: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Transition:
 - $(x, y, r) \rightarrow (x^2, \frac{y}{2}, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, \frac{y-1}{2}, rx)$ if y is odd
- Preserved invariant: rx^y is a constant
- ullet \Rightarrow All states reachable from $(\mathit{m},\mathit{n},1)$ will satisfy $\mathit{rx}^{\mathit{y}}=\mathit{m}^{\mathit{n}}$
- $\bullet \Rightarrow \text{if } (x,0,r) \text{ is reachable from } (m,n,1) \text{ then } r=m^n$

- ullet States: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Transition:
 - $(x, y, r) \rightarrow (x^2, \frac{y}{2}, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, \frac{y-1}{2}, rx)$ if y is odd
- Preserved invariant: rx^y is a constant
- \Rightarrow All states reachable from (m, n, 1) will satisfy $rx^y = m^n$
- $\bullet \Rightarrow \text{if } (x,0,r) \text{ is reachable from } (m,n,1) \text{ then } r=m^n.$

- ullet States: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Transition:
 - $(x, y, r) \rightarrow (x^2, \frac{y}{2}, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, \frac{y-1}{2}, rx)$ if y is odd
- Preserved invariant: rx^y is a constant
- \Rightarrow All states reachable from (m, n, 1) will satisfy $rx^y = m^n$
- \Rightarrow if (x, 0, r) is reachable from (m, n, 1) then $r = m^n$.

Termination (liveness)

A transition system (S, \rightarrow) **terminates** from a state s if there is an N such that all runs from s have length at most N.

A **derived variable** is a function $f: S \to \mathbb{R}$.

A derived variable is **strictly decreasing** if $s \to s'$ implies f(s) > f(s').

Theorem

If f is an \mathbb{N} -valued, strictly decreasing derived variable, then the length of any run from s is at most f(s).

Deterministic Finite Automata

A deterministic finite automaton (DFA) is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- ullet Σ is the input alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines a run in the DFA and the word is accepted if the run ends in a final state.

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - ullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

w: 1001

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

w: 1001 ✓

- Start in state q₀
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - \bullet Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

For a DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, the **language of** \mathcal{A} , $\mathcal{L}(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}

A language $L\subseteq \Sigma^*$ is **regular** if there is some DFA $\mathcal A$ such that $L=L(\mathcal A)$

Example

 \mathcal{A} such that $L(\mathcal{A}) = \{ w \in \{a, b\}^* : \text{ every odd symbol is } b \}$

Non-deterministic Finite Automata

A **non-deterministic finite automaton (NFA)** is a non-deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA

Non-deterministic Finite Automata

Formally, a **non-deterministic finite automaton (NFA)** is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- \bullet Σ is the input alphabet
- $\delta \subseteq Q \times (\Sigma \cup {\epsilon}) \times Q$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states

An NFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines several runs in the NFA and the word is accepted if **at least one run** ends in a final state.

Note 1: Runs can end prematurely (these don't count)

Note 2: An NFA will always "choose wisely"

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

w: 1000 ✓

- Start in state q₀
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ , transition to any state determined by δ
 - If not an ϵ -transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.

For an NFA $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$, the **language of** \mathcal{A} , $\mathcal{L}(\mathcal{A})$, is the set of words from Σ^* which are accepted by \mathcal{A}