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Week 7 recap: State machines/Transition systems

Abstractions of step-by-step processes

Definitions:

States and Transitions
(Non-)determinism
Reachability
Safety and Liveness

The Invariant Principle

Termination

Finite automata:

DFAs, NFAs
Regular languages
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Definitions

A transition system is a pair (S ,→) where:

S is a set (of states), and

→⊆ S × S is a (transition) relation.

S may have a designated start state, s0 ∈ S

S may have designated final states, F ⊆ S

The transitions may be labelled by elements of a set Λ:

→⊆ S × Λ× S
(s, a, s ′) ∈→ is written as s

a−→ s ′

If → is a function we say the system is deterministic, in
general it is non-deterministic

3



Runs and reachability

Given a transition system (S ,→) and states s, s ′ ∈ S ,

a run from s is a (possibly infinite) sequence s1, s2, . . . such
that s = s1 and si → si+1 for all i ≥ 1.

we say s ′ is reachable from s, written s →∗ s ′, if (s, s ′) is in
the transitive closure of →.
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Safety and Liveness

Common problem (Safety)

Will every run of a transition system avoid a particular state or
states? Equivalently, will some run of a transition system reach a
particular state or states?

Common problem (Liveness)

Will every run of a transition system reach a particular state or
states? Equivalently, will some run of a transition system avoid a
particular state or states?
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The Invariant Principle (safety)

A preserved invariant of a transition system is a unary predicate
ϕ on states such that if ϕ(s) holds and s → s ′ then ϕ(s ′) holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all
states reachable from s.
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Example

Example

States: Z× Z× Z
Transition:

(x , y , r)→ (x2, y2 , r) if y is even

(x , y , r)→ (x2, y−12 , rx) if y is odd

Preserved invariant: rxy is a constant

⇒ All states reachable from (m, n, 1) will satisfy rxy = mn

⇒ if (x , 0, r) is reachable from (m, n, 1) then r = mn.
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Termination (liveness)

A transition system (S ,→) terminates from a state s if there is
an N such that all runs from s have length at most N.

A derived variable is a function f : S → R.

A derived variable is strictly decreasing if s → s ′ implies
f (s) > f (s ′).

Theorem

If f is an N-valued, strictly decreasing derived variable, then the
length of any run from s is at most f (s).
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Deterministic Finite Automata

q0 q1 q2

0

1

1

0

0,1

A deterministic finite automaton (DFA) is a tuple
(Q,Σ, δ, q0,F ) where

Q is a finite set of states

Σ is the input alphabet

δ : Q × Σ→ Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states
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Language of a DFA

q0 q1 q2

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Informally: A word defines a run in the DFA and the word is accepted
if the run ends in a final state.
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Language of a DFA

q0 q1 q2

w : 1001

0

1

1

0

0,1

A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Start in state q0

Take the first symbol of w

Repeat the following until there are no symbols left:

Based on the current state and current input symbol,
transition to the appropriate state determined by δ
Move to the next symbol in w

Accept if the process ends in a final state, otherwise reject.
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Language of a DFA

q0 q1 q2
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Language of a DFA

q0 q1 q2

L(A) = {1, 01, 11, 101, . . .}
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A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

For a DFA A = (Q,Σ, δ, q0,F ), the language of A, L(A), is the
set of words from Σ∗ which are accepted by A

A language L ⊆ Σ∗ is regular if there is some DFA A such that
L = L(A)
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Example

Example

A such that L(A) = {w ∈ {a, b}∗ : every odd symbol is b}

A

q0 q1

q2

b

a, b
a

a, b
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Non-deterministic Finite Automata

q0 q1 q2

0,1

1

1

0,ε

0

A non-deterministic finite automaton (NFA) is a non-
deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA

22



Non-deterministic Finite Automata

q0 q1 q2

0,1
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0

Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,Σ, δ, q0,F ) where

Q is a finite set of states

Σ is the input alphabet

δ ⊆ Q × (Σ ∪ {ε})× Q is the transition relation

q0 ∈ Q is the start state

F ⊆ Q is the set of final/accepting states
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Language of an NFA

q0 q1 q2

0,1

1

1

0, ε

0

An NFA accepts a sequence of symbols from Σ – i.e. elements of Σ∗

Informally: A word defines several runs in the NFA and the word is accepted
if at least one run ends in a final state.

Note 1: Runs can end prematurely (these don’t count)

Note 2: An NFA will always “choose wisely”
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Language of an NFA

q0 q1 q2

w : 1000

0,1

1

1

0, ε

0

Start in state q0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

Based on the current state and current input symbol or ε,
transition to any state determined by δ
If not an ε-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final
state, otherwise reject.
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Language of an NFA

q0 q1 q2
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Accept if there are no symbols left and the process ends in a final
state, otherwise reject.

32



Language of an NFA

q0 q1 q2

L(A) = {1, 01, 11, 10, . . .}
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For an NFA A = (Q,Σ, δ, q0,F ), the language of A, L(A), is the set of
words from Σ∗ which are accepted by A
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