COMP2111 Week 8

Term 1, 2019
Week 7 recap



Week 7 recap: State machines/Transition systems

Abstractions of step-by-step processes

@ Definitions:

States and Transitions
(Non-)determinism
Reachability

Safety and Liveness

@ The Invariant Principle

@ Termination

o Finite automata:

o DFAs, NFAs
o Regular languages



Definitions

A transition system is a pair (S, —) where:
@ S is a set (of states), and

e —C S x S is a (transition) relation.

S may have a designated start state, sp € S

S may have designated final states, F C S
The transitions may be labelled by elements of a set A:

e »CSxAxS
o (s,a,8') € is written as s = s’

o If — is a function we say the system is deterministic, in
general it is non-deterministic



Runs and reachability

Given a transition system (S, —) and states s,s’ € S,

@ a run from s is a (possibly infinite) sequence si, s, . .. such
that s = s; and s; — s;y1 forall i > 1.

@ we say s’ is reachable from s, written s —* &, if (s,s’) is in
the transitive closure of —.



Safety and Liveness

Common problem (Safety)

Will every run of a transition system avoid a particular state or
states? Equivalently, will some run of a transition system reach a
particular state or states?

Common problem (Liveness)

Will every run of a transition system reach a particular state or
states? Equivalently, will some run of a transition system avoid a
particular state or states?




The Invariant Principle (safety)

A preserved invariant of a transition system is a unary predicate
© on states such that if ¢(s) holds and s — s’ then (s) holds.
Invariant principle

If a preserved invariant holds at a state s, then it holds for all
states reachable from s.




Example

Example
o States: Z X Z X 7
@ Transition:
o (x,y,r) = (x*,%,r)if y is even
x2, =

e (X’y,r)_>( ,Tl,rX) ifyiSOdd




Example

Example
o States: Z X Z X Z
@ Transition:
o (x,y,r) = (x*,%,r)if y is even
o (x,y,r) = (x2, %52, x) if y is odd

@ Preserved invariant: rx” is a constant




Example

Example
@ States: Z X Z x 7
@ Transition:
o (x,y,r) = (x*,%,r)if y is even
o (x,y,r) = (x2, %52, x) if y is odd
@ Preserved invariant: rx? is a constant

@ = All states reachable from (m, n, 1) will satisfy rx¥ = m"




Example

Example

o States: Z X Z X 7
@ Transition:
o (x,y,r) = (x*,%,r)if y is even
o (x,y,r) = (x2, %52, x) if y is odd
@ Preserved invariant: rx? is a constant
@ = All states reachable from (m, n, 1) will satisfy rx¥ = m"

e = if (x,0,r) is reachable from (m, n,1) then r = m".




Termination (liveness)

A transition system (S, —) terminates from a state s if there is
an N such that all runs from s have length at most N.

A derived variable is a function f : S — R.
A derived variable is strictly decreasing if s — s’ implies

f(s) > F(s').

Theorem

If f is an N-valued, strictly decreasing derived variable, then the
length of any run from s is at most f(s).




Deterministic Finite Automata

0 1
0
@ 1
—>
0,1

A deterministic finite automaton (DFA) is a tuple
(Q, %, 9, qo, F) where

@ @ is a finite set of states

@ Y is the input alphabet

@ 0:Q x X — Q is the transition function
@ gp € @ is the start state

@ F C Q is the set of final/accepting states



Language of a DFA

0 1
0
@ 1
—>
01

A DFA accepts a sequence of symbols from ¥ —i.e. elements of ©*

Informally: A word defines a run in the DFA and the word is accepted
if the run ends in a final state.



Language of a DFA

0 1
0
~(%)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ — i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
o Move to the next symbol in w

@ Accept if the process ends in a final state, otherwise reject.



Language of a DFA

0 1
0
~@—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ — i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
o Move to the next symbol in w

@ Accept if the process ends in a final state, otherwise reject.



Language of a DFA

0 1
0
~(%)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ — i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
o Move to the next symbol in w

@ Accept if the process ends in a final state, otherwise reject.



Language of a DFA

0 1
0
~(%)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ — i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
o Move to the next symbol in w

@ Accept if the process ends in a final state, otherwise reject.



Language of a DFA

0 1
0
~(%)—
0,1
w: 1001

A DFA accepts a sequence of symbols from ¥ — i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
o Move to the next symbol in w

@ Accept if the process ends in a final state, otherwise reject.



Language of a DFA

0 1
0
~(%)—
0,1
w: 1001 v

A DFA accepts a sequence of symbols from ¥ — i.e. elements of L*
@ Start in state qg
@ Take the first symbol of w

@ Repeat the following until there are no symbols left:

o Based on the current state and current input symbol,
transition to the appropriate state determined by §
o Move to the next symbol in w

@ Accept if the process ends in a final state, otherwise reject.



Language of a DFA

0 1
0
@ 1
—>
01

L(A) = {1,01,11,101,...}

A DFA accepts a sequence of symbols from ¥ — i.e. elements of L*
For a DFA A = (Q, %, 0, qo, F), the language of A, L(A), is the
set of words from X* which are accepted by A

A language L C X* is regular if there is some DFA A such that
L=L(A)



Example

Example

A such that L(A) = {w € {a, b}* :

b
a,b

every odd symbol is b}

)




Non-deterministic Finite Automata

0,1 1
0,¢
@ 1
—_
0

A non-deterministic finite automaton (NFA)
deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA

is a non-



Non-deterministic Finite Automata

0,1 1
0,
@ 1
—_
0

Formally, a non-deterministic finite automaton (NFA) is a tuple
(Q,%,9, qo, F) where

@ @ is a finite set of states

> is the input alphabet

J C Q x (XU {e}) x Q is the transition relation
go € Q is the start state

F C Q is the set of final/accepting states



Language of an NFA

0,1 1
0,¢
@ 1
—_
0

An NFA accepts a sequence of symbols from ¥ — i.e. elements of ©*

Informally: A word defines several runs in the NFA and the word is accepted
if at least one run ends in a final state.

Note 1: Runs can end prematurely (these don't count)

Note 2: An NFA will always “choose wisely”



Language of an NFA

0,1 1
0,¢
~()—
0
w: 1000

@ Start in state qq
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
e If not an e-transition, move to the next symbol in w

@ Accept if there are no symbols left and the process ends in a final
state, otherwise reject.



Language of an NFA

0,1 1
0,¢
~@&—
0
w: 1000

@ Start in state qq
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
e If not an e-transition, move to the next symbol in w

@ Accept if there are no symbols left and the process ends in a final
state, otherwise reject.



Language of an NFA

0,1 1
0,¢
~()—
0
w: 1000

@ Start in state qq
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
e If not an e-transition, move to the next symbol in w

@ Accept if there are no symbols left and the process ends in a final
state, otherwise reject.



Language of an NFA

0,1 1
0,¢
~()—
0
w: 1000

@ Start in state qq
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
e If not an e-transition, move to the next symbol in w

@ Accept if there are no symbols left and the process ends in a final
state, otherwise reject.



Language of an NFA

0,1 1
0,¢
~()—
0
w: 1000

@ Start in state qq
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
e If not an e-transition, move to the next symbol in w

@ Accept if there are no symbols left and the process ends in a final
state, otherwise reject.



Language of an NFA

0,1 1
0,¢
~()—
0
w: 1000

@ Start in state qq
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
e If not an e-transition, move to the next symbol in w

@ Accept if there are no symbols left and the process ends in a final
state, otherwise reject.



Language of an NFA

0,1 1
0,¢
~()—
0
w: 1000

@ Start in state qq
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
e If not an e-transition, move to the next symbol in w

@ Accept if there are no symbols left and the process ends in a final
state, otherwise reject.



Language of an NFA

0,1 1
0,¢
~()—
0
w: 1000 v

@ Start in state qq
@ Take the first symbol of w
@ Repeat until there are no symbols left or no transitions available:

o Based on the current state and current input symbol or e,
transition to any state determined by ¢
e If not an e-transition, move to the next symbol in w

@ Accept if there are no symbols left and the process ends in a final
state, otherwise reject.



Language of an NFA

0,1 1
0,¢

~(@—=(J_1)

0
L(A) = {1,01,11,10,...}

For an NFA A = (Q, X, 6, qo, F), the language of A, L(A), is the set of
words from X* which are accepted by A



