COMP2111 Week 8
Term 1, 2019
Week 7 recap
Abstractions of step-by-step processes

- Definitions:
 - States and Transitions
 - (Non-)determinism
 - Reachability
 - Safety and Liveness

- The Invariant Principle

- Termination

- Finite automata:
 - DFAs, NFAs
 - Regular languages
Definitions

A transition system is a pair \((S, \rightarrow)\) where:

- \(S\) is a set (of states), and
- \(\rightarrow \subseteq S \times S\) is a (transition) relation.

- \(S\) may have a designated start state, \(s_0 \in S\)
- \(S\) may have designated final states, \(F \subseteq S\)
- The transitions may be labelled by elements of a set \(\Lambda\):
 - \(\rightarrow \subseteq S \times \Lambda \times S\)
 - \((s, a, s')\) \(\in \rightarrow\) is written as \(s \xrightarrow{a} s'\)
- If \(\rightarrow\) is a function we say the system is deterministic, in general it is non-deterministic
Runs and reachability

Given a transition system \((S, \rightarrow)\) and states \(s, s' \in S\),

- a **run** from \(s\) is a (possibly infinite) sequence \(s_1, s_2, \ldots\) such that \(s = s_1\) and \(s_i \rightarrow s_{i+1}\) for all \(i \geq 1\).

- we say \(s'\) is **reachable** from \(s\), written \(s \rightarrow^* s'\), if \((s, s')\) is in the transitive closure of \(\rightarrow\).
Safety and Liveness

Common problem (Safety)
Will every run of a transition system avoid a particular state or states? Equivalently, will some run of a transition system reach a particular state or states?

Common problem (Liveness)
Will every run of a transition system reach a particular state or states? Equivalently, will some run of a transition system avoid a particular state or states?
The Invariant Principle (safety)

A **preserved invariant** of a transition system is a unary predicate φ on states such that if $\varphi(s)$ holds and $s \rightarrow s'$ then $\varphi(s')$ holds.

Invariant principle

If a preserved invariant holds at a state s, then it holds for all states reachable from s.
Example

- **States:** $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- **Transition:**
 - $(x, y, r) \rightarrow (x^2, \frac{y}{2}, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, \frac{y-1}{2}, rx)$ if y is odd
- **Preserved invariant:** rx^y is a constant
- \Rightarrow All states reachable from $(m, n, 1)$ will satisfy $rx^y = m^n$
- \Rightarrow if $(x, 0, r)$ is reachable from $(m, n, 1)$ then $r = m^n$.
Example

- States: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Transition:
 - $(x, y, r) \rightarrow (x^2, \frac{y}{2}, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, \frac{y-1}{2}, rx)$ if y is odd
- Preserved invariant: rx^y is a constant
 - \Rightarrow All states reachable from $(m, n, 1)$ will satisfy $rx^y = m^n$
 - \Rightarrow if $(x, 0, r)$ is reachable from $(m, n, 1)$ then $r = m^n$.
Example

- States: \(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \)
- Transition:
 - \((x, y, r) \rightarrow (x^2, \frac{y}{2}, r)\) if \(y\) is even
 - \((x, y, r) \rightarrow (x^2, \frac{y-1}{2}, rx)\) if \(y\) is odd
- Preserved invariant: \(rx^y\) is a constant
- \(\Rightarrow\) All states reachable from \((m, n, 1)\) will satisfy \(rx^y = m^n\)
- \(\Rightarrow\) If \((x, 0, r)\) is reachable from \((m, n, 1)\) then \(r = m^n\).
Example

- States: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Transition:
 - $(x, y, r) \rightarrow (x^2, \frac{y}{2}, r)$ if y is even
 - $(x, y, r) \rightarrow (x^2, \frac{y-1}{2}, rx)$ if y is odd
- Preserved invariant: rx^y is a constant
- \Rightarrow All states reachable from $(m, n, 1)$ will satisfy $rx^y = m^n$
- \Rightarrow if $(x, 0, r)$ is reachable from $(m, n, 1)$ then $r = m^n$.
Termination (liveness)

A transition system \((S, \rightarrow)\) terminates from a state \(s\) if there is an \(N\) such that all runs from \(s\) have length at most \(N\).

A derived variable is a function \(f : S \rightarrow \mathbb{R}\).

A derived variable is strictly decreasing if \(s \rightarrow s'\) implies \(f(s) > f(s')\).

Theorem

If \(f\) is an \(\mathbb{N}\)-valued, strictly decreasing derived variable, then the length of any run from \(s\) is at most \(f(s)\).
A deterministic finite automaton (DFA) is a tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- Σ is the input alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final/accepting states
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines a run in the DFA and the word is accepted if the run ends in a final state.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

- Start in state q_0
- Take the first symbol of w
- Repeat the following until there are no symbols left:
 - Based on the current state and current input symbol, transition to the appropriate state determined by δ
 - Move to the next symbol in w
- Accept if the process ends in a final state, otherwise reject.
A DFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

For a DFA $A = (Q, \Sigma, \delta, q_0, F)$, the **language of** A, $L(A)$, is the set of words from Σ^* which are accepted by A

A language $L \subseteq \Sigma^*$ is **regular** if there is some DFA A such that $L = L(A)$
A such that $L(A) = \{w \in \{a, b\}^* : \text{every odd symbol is } b\}$
A **non-deterministic finite automaton (NFA)** is a non-deterministic, finite state acceptor.

More general than DFAs: A DFA is an NFA.
Formally, a **non-deterministic finite automaton (NFA)** is a tuple
\((Q, \Sigma, \delta, q_0, F)\) where

- **\(Q\)** is a finite set of states
- **\(\Sigma\)** is the input alphabet
- **\(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q\)** is the transition relation
- **\(q_0 \in Q\)** is the start state
- **\(F \subseteq Q\)** is the set of final/accepting states
An NFA accepts a sequence of symbols from Σ – i.e. elements of Σ^*

Informally: A word defines several runs in the NFA and the word is accepted if \textbf{at least one run} ends in a final state.

Note 1: Runs can end prematurely (these don’t count)

Note 2: An NFA will always “choose wisely”
Language of an NFA

1. Start in state q_0
2. Take the first symbol of w
3. Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ, transition to any state determined by δ
 - If not an ϵ-transition, move to the next symbol in w
4. Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.

w: 1000
Language of an NFA

- Start in state q_0
- Take the first symbol of w
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or ϵ, transition to any state determined by δ
 - If not an ϵ-transition, move to the next symbol in w
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

\[w: 1000 \]

- Start in state \(q_0 \)
- Take the first symbol of \(w \)
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or \(\epsilon \), transition to any state determined by \(\delta \)
 - If not an \(\epsilon \)-transition, move to the next symbol in \(w \)
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

\[w: 1000 \]

- Start in state \(q_0 \)
- Take the first symbol of \(w \)
- Repeat until there are no symbols left or no transitions available:
 - Based on the current state and current input symbol or \(\epsilon \), transition to any state determined by \(\delta \)
 - If not an \(\epsilon \)-transition, move to the next symbol in \(w \)
- Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

Start in state \(q_0 \)

Take the first symbol of \(w \)

Repeat until there are no symbols left or no transitions available:
- Based on the current state and current input symbol or \(\epsilon \), transition to any state determined by \(\delta \)
- If not an \(\epsilon \)-transition, move to the next symbol in \(w \)

Accept if there are no symbols left and the process ends in a final state, otherwise reject.
Language of an NFA

Start in state q_0

Take the first symbol of w

Repeat until there are no symbols left or no transitions available:

- Based on the current state and current input symbol or ϵ, transition to any state determined by δ
- If not an ϵ-transition, move to the next symbol in w

Accept if there are no symbols left and the process ends in a final state, otherwise reject.

$w: 1000 \checkmark$
Language of an NFA

For an NFA \(\mathcal{A} = (Q, \Sigma, \delta, q_0, F) \), the language of \(\mathcal{A} \), \(L(\mathcal{A}) \), is the set of words from \(\Sigma^* \) which are accepted by \(\mathcal{A} \)