COMP4418: Knowledge Representation and Reasoning
Propositional Logic 2

Maurice Pagnucco
School of Computer Science and Engineering
COMP4418, Week 1
Propositional Logic

• Thus far we have considered propositional logic as a knowledge representation language
• We can now write sentences in this language (syntax)
• We can also determine the truth or falsity of these sentences (semantics)
• What remains is to reason; to draw new conclusions from what we know (proof theory) and to do so using a computer to automate the process
• References:
Overview

- Normal Forms
- Resolution
- Refutation Systems
- Correctness of resolution rule — soundness and completeness revisited
- Conclusion
Motivation

If either George or Herbert wins, then both Jack and Kenneth lose

George wins

Therefore, Jack loses

\[(G \lor H) \rightarrow (\neg J \land \neg K)\]

\[G \rightarrow \neg J\]
Normal Forms

• A normal form is a “standardised” version of a formula

• Common normal forms:
 Negation Normal Form — negation symbols occur in front of propositional letters only (e.g., \((P \lor \neg Q) \rightarrow (P \land (\neg R \lor S))\))
 (A literal is a propositional letter or the negation of a propositional letter.)
 Conjunctive Normal Form (CNF) — a conjunct of disjunctions (e.g., \((P \lor Q \lor \neg R) \land (\neg S \lor \neg R)\))
 Disjunctions of literals are known as clauses
 Disjunctive Normal Form (DNF) — a disjunct of conjunctions (e.g., \((P \land Q \land \neg R) \lor (\neg S \land \neg R)\))
Negation Normal Form

- To simplify matters, let us suppose we are only dealing with formulae containing the connectives \neg, \land, \lor
- A (sub)formula $\phi \rightarrow \psi$ is equivalent to $\neg \phi \lor \psi$
- A (sub) formula $\phi \leftrightarrow \psi$ is equivalent to $\phi \rightarrow \psi$ and $\psi \rightarrow \phi$
- DeMorgan’s laws:
 - $\neg (\phi \land \psi) \equiv \neg \phi \lor \neg \psi$
 - $\neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$
- Double Negation: $\neg \neg P \equiv P$
- To put a formula in negation normal form, repeatedly apply De Morgan’s laws and double negation
- For example, $\neg (P \lor (\neg R \land P)) \equiv \neg P \land \neg(\neg R \land P) \equiv \neg P \land (R \lor \neg P)$
Conjunctive Normal Form

• Note the following distributive identities:
 \[(\phi \land \psi) \lor \chi \equiv (\phi \lor \chi) \land (\psi \lor \chi)\]
 \[(\phi \lor \psi) \land \chi \equiv (\phi \land \chi) \lor (\psi \land \chi)\]

• To put a formula in conjunctive normal form (CNF) firstly put the formula into negation normal form and then repeatedly apply the identities above

• For example, \(R \rightarrow (P \land Q) \equiv (\neg R \lor P) \land (\neg R \lor Q)\)
Resolution Rule

Resolution Rule:

\[\alpha \lor \beta \lor \gamma\]

- Where \(\beta\) is a literal (i.e., a propositional letter or its negation)
Resolution Rule

\[\neg \alpha \rightarrow \beta \quad \beta \rightarrow \gamma \]

- Resolution is essentially equivalent to the transitivity of material implication
- In fact, it is a form of the well known cut rule in logic
Applying Resolution

• The resolution rule is sound
• What does that mean?
• How can we use the resolution rule?
 ○ Convert premises into CNF
 ○ Repeatedly apply resolution rule to the resultant clauses
 ○ Each clause produced can be inferred from the original premises
 ○ If you have a query sentence goal, it follows from the premises if and only if each of the clauses in CNF(goal) is produced by resolution

• There is a better way . . .
Refutation Systems

• If we would like to prove a sentence ϕ is a theorem (i.e., $\vdash \phi$), we start with $\neg\phi$ and produce a contradiction
• A “proof by contradiction”
• Similarly, if we wish to prove $\psi_1, \ldots, \psi_n \vdash \phi$, start with $\neg\phi$ and together with ψ_1, \ldots, ψ_n produce a contradiction
• Resolution can be used to implement a refutation system
• Repeatedly apply resolution rule until *empty clause* results
Applying Resolution

- Negate conclusion (resolution is a refutation system)
- Convert premises and negated conclusion into CNF (*clausal form*)
- Repeatedly apply Resolution Rule, Double Negation
- If *empty clause* results you have a contradiction and can conclude that the conclusion follows from the premises
Resolution — Example 1

\[(G \lor H) \rightarrow (\neg J \land \neg K), \ G \vdash \neg J\]

\[\text{CNF}[(G \lor H) \rightarrow (\neg J \land \neg K)] \equiv (\neg G \lor \neg J) \land (\neg H \lor \neg J) \land (\neg G \lor \neg K) \land (\neg H \lor \neg K)\]

1. \(\neg G \lor \neg J\) [Premise]
2. \(\neg H \lor \neg J\) [Premise]
3. \(\neg G \lor \neg K\) [Premise]
4. \(\neg H \lor \neg K\) [Premise]
5. \(G\) [Premise]
6. \(\neg \neg J\) [\(\neg\) Conclusion]
7. \(J\) [6. Double Negation]
8. \(\neg G\) [1, 7. Resolution]
9. \(\Box\) [5, 8. Resolution]
Resolution — Example 2

\[P \rightarrow \neg Q, \ \neg Q \rightarrow R \vdash P \rightarrow R \]
\[P \rightarrow R \equiv \neg P \lor R \]
\[\text{CNF}[(\neg P \lor R)] \equiv \{\neg \neg P, \ \neg R\} \]

1. \(\neg P \lor \neg Q \) [Premise]
2. \(\neg \neg Q \lor R \) [Premise]
3. \(\neg \neg P \) [\(\neg \) Conclusion]
4. \(\neg R \) [\(\neg \) Conclusion]
5. \(P \) [3. Double Negation]
6. \(\neg Q \) [1, 5. Resolution]
7. \(R \) [2, 6. Resolution]
8. \(\Box \) [4, 7. Resolution]
Resolution — Example 3

$$\vdash ((P \lor Q) \land \neg P) \rightarrow Q$$

$\text{CNF}[\neg(((P \lor Q) \land \neg P) \rightarrow Q)] \equiv (P \lor Q) \land \neg P \land \neg Q$

1. $P \lor Q$ $[\neg \text{Conclusion}]$
2. $\neg P$ $[\neg \text{Conclusion}]$
3. $\neg Q$ $[\neg \text{Conclusion}]$
4. Q $[1, 2. \text{Resolution}]$
5. \Box $[3, 4. \text{Resolution}]$
Soundness and Completeness — Recap

• An inference procedure (and hence a logic) is *sound* if and only if it preserves truth
• In other words ⊢ is sound iff whenever $\lambda \vdash \rho$, then $\lambda \models \rho$
• A logic is *complete* if and only if it is capable of proving all truths
• In other words, whenever $\lambda \models \rho$, then $\lambda \vdash \rho$
Decidability

- A logic is *decidable* if and only if there is a mechanical procedure that, when asked $\lambda \vdash \rho$, can eventually halt and answer “yes” or halt and answer “no”
- Propositional logic is decidable
Heuristics in applying Resolution

• Clause elimination — can disregard certain types of clauses
 ○ Pure clauses: contain literal L where $\neg L$ doesn’t appear elsewhere
 ○ Tautologies: clauses containing both L and $\neg L$
 ○ Subsumed clauses: another clause exists containing a subset of the literals

• Ordering strategies
 ○ Unit preference: resolve unit clauses (only one literal) first

• Many others …
Conclusion

- We have now investigated one knowledge representation and reasoning formalism
- This means we can draw new conclusions from the knowledge we have; we can reason
- Have enough to build a knowledge-based agent
- However, propositional logic is a weak language; there are many things we can’t express in it
- It cannot be used to express knowledge about objects, their properties and the relationships that exist between objects
- For this purpose we need a more expressive language: first-order logic