COMP4418: Knowledge Representation and Reasoning

Propositional Logic 2

Maurice Pagnucco

School of Computer Science and Engineering
COMP4418, Week 1

Propositional Logic

- Thus far we have considered propositional logic as a knowledge representation language
- We can now write sentences in this language (syntax)
- We can also determine the truth or falsity of these sentences (semantics)
- What remains is to reason; to draw new conclusions from what we know (proof theory) and to do so using a computer to automate the process
- References:
- Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall International, 1995. (Chapter 6)

Overview

- Normal Forms
- Resolution
- Refutation Systems
- Correctness of resolution rule - soundness and completeness revisited
- Conclusion

Motivation

Normal Forms

- A normal form is a "standardised" version of a formula
- Common normal forms:

Negation Normal Form - negation symbols occur in front of propositional letters only (e.g., $(P \vee \neg Q) \rightarrow(P \wedge(\neg R \vee S))$ (A literal is a propositional letter or the negation of a propositional letter.) Conjunctive Normal Form (CNF) - a conjunct of disjunctions (e.g., ($P \vee$ $Q \vee \neg R) \wedge(\neg S \vee \neg R))$
Disjunctions of literals are known as clauses Disjunctive Normal Form (DNF) — a disjunct of conjunctions (e.g., $(P \wedge$ $Q \wedge \neg R) \vee(\neg S \wedge \neg R))$

Negation Normal Form

- To simplify matters, let us suppose we are only dealing with formulae containing the connectives \neg, \wedge, \vee
- A (sub)formula $\phi \rightarrow \psi$ is equivalent to $\neg \phi \vee \psi$
- A (sub) formula $\phi \leftrightarrow \psi$ is equivalent to $\phi \rightarrow \psi$ and $\psi \rightarrow \phi$
- DeMorgan's laws:

$$
\begin{aligned}
\circ \neg(\phi \wedge \psi) & \equiv \neg \phi \vee \neg \psi \\
\circ \neg(\phi \vee \psi) & \equiv \neg \phi \wedge \neg \psi
\end{aligned}
$$

- Double Negation: $\neg \neg P \equiv P$
- To put a formula in negation normal form, repeatedly apply De Morgan's laws and double negation
- For example, $\neg(P \vee(\neg R \wedge P)) \equiv \neg P \wedge \neg(\neg R \wedge P) \equiv \neg P \wedge(R \vee \neg P)$

Conjunctive Normal Form

- Note the following distributive identities:

$$
\begin{aligned}
& (\phi \wedge \psi) \vee \chi \equiv(\phi \vee \chi) \wedge(\psi \vee \chi) \\
& (\phi \vee \psi) \wedge \chi \equiv(\phi \wedge \chi) \vee(\psi \wedge \chi)
\end{aligned}
$$

- To put a formula in conjunctive normal form (CNF) firstly put the formula into negation normal form and then repeatedly apply the identities above
- For example, $R \rightarrow(P \wedge Q) \equiv(\neg R \vee P) \wedge(\neg R \vee Q)$

Resolution Rule

Resolution Rule:

- Where β is a literal (i.e., a propositional letter or its negation)

Resolution Rule

- Resolution is essentially equivalent to the transitivity of material implication
- In fact, it is a form of the well known cut rule in logic

Applying Resolution

- The resolution rule is sound
- What does that mean?
- How can we use the resolution rule?
- Convert premises into CNF
- Repeatedly apply resolution rule to the resultant clauses
- Each clause produced can be inferred from the original premises
- If you have a query sentence goal, it follows from the premises if and only if each of the clauses in CNF (goal) is produced by resolution
- There is a better way...

Refutation Systems

- If we would like to prove a sentence ϕ is a theorem (i.e., $\vdash \phi$), we start with $\neg \phi$ and produce a contradiction
- A "proof by contradiction"
- Similarly, if we wish to prove $\psi_{1}, \ldots, \psi_{n} \vdash \phi$, start with $\neg \phi$ and together with $\psi_{1}, \ldots, \psi_{n}$ produce a contradiction
- Resolution can be used to implement a refutation system
- Repeatedly apply resolution rule until empty clause results

Applying Resolution

- Negate conclusion (resolution is a refutation system)
- Convert premises and negated conclusion into CNF (clausal form)
- Repeatedly apply Resolution Rule, Double Negation
- If empty clause results you have a contradiction and can conclude that the conclusion follows from the premises

Resolution - Example 1

$(G \vee H) \rightarrow(\neg J \wedge \neg K), G \vdash \neg J$
$C N F[(G \vee H) \rightarrow(\neg J \wedge \neg K)] \equiv(\neg G \vee \neg J) \wedge(\neg H \vee \neg J) \wedge(\neg G \vee \neg K) \wedge(\neg H \vee \neg K)$

1. $\neg G \vee \neg J \quad[$ Premise $]$
2. $\neg H \vee \neg J \quad[$ Premise $]$
3. $\neg G \vee \neg K \quad[$ Premise $]$
4. $\neg H \vee \neg K \quad[$ Premise $]$
5. $G \quad[$ Premise $]$
6. $\neg \neg J \quad[\neg$ Conclusion $]$
7. $J \quad[6$. Double Negation $]$
8. $\neg G \quad[1,7$. Resolution $]$
9. $\square \quad[5,8$. Resolution $]$

Resolution - Example 2

$P \rightarrow \neg Q, \neg Q \rightarrow R \vdash P \rightarrow R$
$C N F[\neg(\neg P \vee R)] \equiv\{$
1. $\neg P \vee \neg Q \quad$ [Premise]
2. $\neg \neg Q \vee R \quad$ [Premise]
3. $\neg \neg P \quad[\neg$ Conclusion $]$
4. $\neg R \quad[\neg$ Conclusion $]$
5. P [3. Double Negation]
6. $\neg Q \quad[1,5$. Resolution $]$
7. R [2,6. Resolution]
8. \square [4, 7. Resolution]

Resolution - Example 3

$\vdash((P \vee Q) \wedge \neg P) \rightarrow Q$
$C N F[\neg(((P \vee Q) \wedge \neg P) \rightarrow Q)] \equiv(P \vee Q) \wedge \neg P \wedge \neg Q$

1. $P \vee Q \quad[\neg$ Conclusion $]$
2. $\neg P \quad[\neg$ Conclusion $]$
3. $\neg Q \quad[\neg$ Conclusion $]$
4. $Q \quad[1,2$. Resolution $]$
5. $\square \quad[3,4$. Resolution $]$

Soundness and Completeness - Recap

- An inference procedure (and hence a logic) is sound if and only if it preserves truth
- In other words \vdash is sound iff whenever $\lambda \vdash \rho$, then $\lambda \models \rho$
- A logic is complete if and only if it is capable of proving all truths
- In other words, whenever $\lambda \models \rho$, then $\lambda \vdash \rho$

Decidability

- A logic is decidable if and only if there is a mechanical procedure that, when asked $\lambda \vdash \rho$, can eventually halt and answer "yes" or halt and answer "no"
- Propositional logic is decidable

Heuristics in applying Resolution

- Clause elimination - can disregard certain types of clauses
- Pure clauses: contain literal L where $\neg L$ doesn't appear elsewhere
- Tautologies: clauses containing both L and $\neg L$
- Subsumed clauses: another clause exists containing a subset of the literals
- Ordering strategies
- Unit preference: resolve unit clauses (only one literal) first
- Many others ...

Conclusion

- We have now investigated one knowledge representation and reasoning formalism
- This means we can draw new conclusions from the knowledge we have; we can reason
- Have enough to build a knowledge-based agent
- However, propositional logic is a weak language; there are many things we can't express in it
- It cannot be used to express knowledge about objects, their properties and the relationships that exist between objects
- For this purpose we need a more expressive language: first-order logic

