o

COMP4418: Knowledge Representation

and Reasoning
UNSW Propositional Logic 2

SYDNEY

Maurice Pagnucco
School of Computer Science and Engineering

COMP4418, Week 1

Propositional Logic

e Thus far we have considered propositional logic as a knowledge
representation language

e We can now write sentences in this language (syntax)

e We can also determine the truth or falsity of these sentences (semantics)
o What remains is to reason; to draw new conclusions from what we know
(proof theory) and to do so using a computer to automate the process

¢ References:

o Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach,
Prentice-Hall International, 1995. (Chapter 6)

Overview

Normal Forms

Resolution

Refutation Systems

Correctness of resolution rule — soundness and completeness revisited
Conclusion

Motivation

If either George or Herbert wins, then both Jack and
Kenneth lose
George wins

Therefore, Jack loses

(GV H) — (~J A —K)
G
-J

Normal Forms

e A normal form is a “standardised” version of a formula

e Common normal forms:
Negation Normal Form — negation symbols occur in front of propositional
letters only (e.g., (PV —-Q) — (P A (=R V S))
(A literal is a propositional letter or the negation of a propositional letter.)
Conjunctive Normal Form (CNF) — a conjunct of disjunctions (e.g., (P v
QV-R)AN(=SV-R))
Disjunctions of literals are known as clauses
Disjunctive Normal Form (DNF) — a disjunct of conjunctions (e.g., (P A
QA-R)V(=SA-R))

Negation Normal Form

¢ To simplify matters, let us suppose we are only dealing with formulae
containing the connectives -, A, V

e A (sub)formula ¢ — v is equivalent to —¢ Vv v
e A (sub) formula ¢ < v is equivalentto ¢ — ¢y and ¢ — ¢
e DeMorgan’s laws:
o ~(pNP)=—pV)
° (V) =—dp At
e Double Negation: -——P =P

e To put a formula in negation normal form, repeatedly apply De Morgan’s laws
and double negation

e For example, =(PV (-RAP))=-PA—=(-RAP)=-PA(RV-P)

Conjunctive Normal Form

¢ Note the following distributive identities:
(PAY)VX=(dVX)A (Y VX)
(eVe)Ax=(eAX)V (P AX)
e To put a formula in conjunctive normal form (CNF) firstly put the formula into
negation normal form and then repeatedly apply the identities above
e Forexample, R — (PAQ)=(-RVP)A(-RV Q)

Resolution Rule

Resolution Rule:
aVp BV

aVry

e Where j is a literal (i.e., a propositional letter or its negation)

Resolution Rule

o= 3 B—n

o — Yy

¢ Resolution is essentially equivalent to the transitivity of material implication
e Infact, it is a form of the well known cut rule in logic

Applying Resolution

The resolution rule is sound
What does that mean?

How can we use the resolution rule?

Convert premises into CNF

Repeatedly apply resolution rule to the resultant clauses

Each clause produced can be inferred from the original premises

If you have a query sentence goal, it follows from the premises if and only if
each of the clauses in CNF(goal) is produced by resolution

There is a better way ...

[]
O O O O

Refutation Systems

¢ |f we would like to prove a sentence ¢ is a theorem (i.e., - ¢), we start with —¢
and produce a contradiction

e A “proof by contradiction”

e Similarly, if we wish to prove 4, ..., ¥nt ¢, start with —¢ and together with
Y1, ..., ¥pproduce a contradiction

¢ Resolution can be used to implement a refutation system
¢ Repeatedly apply resolution rule until empty clause results

Applying Resolution

Negate conclusion (resolution is a refutation system)
Convert premises and negated conclusion into CNF (clausal form)
Repeatedly apply Resolution Rule, Double Negation

If empty clause results you have a contradiction and can conclude that the
conclusion follows from the premises

Resolution — Example 1

(GVH) = (~JA-K), GF ~J
CNF[(GV H) = (~J A =K)] = (=G V ~J) A (-HV =) A (-G V =K) A (=H V =K)

—_

2
3
4
5.
6
7
8
9

. J

.0

.mGV-J [Premise]

.mHV-J [Premise]

.GV -K [Premise]

. Hv =K [Premise]

G [Premise]

. ==J [~ Conclusion]
[6. Double Negation]

.~G [1, 7. Resolution]
[5, 8. Resolution]

Resolution — Example 2

P—--Q -Q—R-P—-R
P—R=-PVR
CNF[-(-PV R)] = {—-—-P, -R}

1.

-Pv-Q [Premise]

2. -—QV R [Premise]
3. =—P [~ Conclusion]
4. -R [- Conclusion]

5.
6
7
8

P [3. Double Negation]

.—=Q [1, 5. Resolution]
. R [2, 6. Resolution]
.0 [4,7. Resolution]

Resolution — Example 3

F((PVQ)A=P) = Q

CNF[-((PVQ)A=P) = Q)=(PVQ)A-PA-Q
1. Pv Q [- Conclusion]

2. =P [~ Conclusion]

3. -Q [~ Conclusion]

4. Q [1, 2. Resolution]

5.0 [3, 4. Resolution]

Soundness and Completeness — Recap

An inference procedure (and hence a logic) is sound if and only if it preserves
truth

In other words + is sound iff whenever A\ - p, then \ = p
A logic is complete if and only if it is capable of proving all truths
In other words, whenever X\ = p, then A - p

Decidability

¢ Alogic is decidable if and only if there is a mechanical procedure that, when
asked \ - p, can eventually halt and answer “yes” or halt and answer “no”

e Propositional logic is decidable

Heuristics in applying Resolution

¢ Clause elimination — can disregard certain types of clauses

o Pure clauses: contain literal L where —L doesn’t appear elsewhere
o Tautologies: clauses containing both L and —L
o Subsumed clauses: another clause exists containing a subset of the literals

e Ordering strategies
o Unit preference: resolve unit clauses (only one literal) first

e Many others ...

Conclusion

We have now investigated one knowledge representation and reasoning
formalism

This means we can draw new conclusions from the knowledge we have; we
can reason

Have enough to build a knowledge-based agent

However, propositional logic is a weak language; there are many things we
can’t express in it

It cannot be used to express knowledge about objects, their properties and
the relationships that exist between objects

For this purpose we need a more expressive language: first-order logic

