
COMP4418: Knowledge Representation
and Reasoning
Propositional Logic 2

Maurice Pagnucco
School of Computer Science and Engineering

COMP4418, Week 1

1



Propositional Logic

• Thus far we have considered propositional logic as a knowledge
representation language

• We can now write sentences in this language (syntax)
• We can also determine the truth or falsity of these sentences (semantics)
• What remains is to reason; to draw new conclusions from what we know

(proof theory) and to do so using a computer to automate the process
• References:

◦ Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach,
Prentice-Hall International, 1995. (Chapter 6)

2



Overview

• Normal Forms
• Resolution
• Refutation Systems
• Correctness of resolution rule — soundness and completeness revisited
• Conclusion

3



Motivation

If either George or Herbert wins, then both Jack and
Kenneth lose
George wins
Therefore, Jack loses

(G ∨ H)→ (¬J ∧ ¬K )
G
¬J

4



Normal Forms

• A normal form is a “standardised” version of a formula
• Common normal forms:

Negation Normal Form — negation symbols occur in front of propositional
letters only (e.g., (P ∨ ¬Q)→ (P ∧ (¬R ∨ S))
(A literal is a propositional letter or the negation of a propositional letter.)
Conjunctive Normal Form (CNF) — a conjunct of disjunctions (e.g., (P ∨
Q ∨ ¬R) ∧ (¬S ∨ ¬R))
Disjunctions of literals are known as clauses
Disjunctive Normal Form (DNF) — a disjunct of conjunctions (e.g., (P ∧
Q ∧ ¬R) ∨ (¬S ∧ ¬R))

5



Negation Normal Form

• To simplify matters, let us suppose we are only dealing with formulae
containing the connectives ¬, ∧, ∨

• A (sub)formula φ→ ψ is equivalent to ¬φ ∨ ψ
• A (sub) formula φ↔ ψ is equivalent to φ→ ψ and ψ → φ

• DeMorgan’s laws:
◦ ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ
◦ ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ

• Double Negation: ¬¬P ≡ P
• To put a formula in negation normal form, repeatedly apply De Morgan’s laws

and double negation
• For example, ¬(P ∨ (¬R ∧ P)) ≡ ¬P ∧ ¬(¬R ∧ P) ≡ ¬P ∧ (R ∨ ¬P)

6



Conjunctive Normal Form

• Note the following distributive identities:
(φ ∧ ψ) ∨ χ ≡ (φ ∨ χ) ∧ (ψ ∨ χ)
(φ ∨ ψ) ∧ χ ≡ (φ ∧ χ) ∨ (ψ ∧ χ)

• To put a formula in conjunctive normal form (CNF) firstly put the formula into
negation normal form and then repeatedly apply the identities above

• For example, R → (P ∧Q) ≡ (¬R ∨ P) ∧ (¬R ∨Q)

7



Resolution Rule

Resolution Rule:
α ∨ β ¬β ∨ γ

α ∨ γ

l
l
l
l
l
l
ll

,
,

,
,

,
,

,,

• Where β is a literal (i.e., a propositional letter or its negation)

8



Resolution Rule

¬α→ β β → γ

¬α→ γ

l
l
l
l
l
l
ll

,
,

,
,

,
,

,,

• Resolution is essentially equivalent to the transitivity of material implication
• In fact, it is a form of the well known cut rule in logic

9



Applying Resolution

• The resolution rule is sound
• What does that mean?
• How can we use the resolution rule?

◦ Convert premises into CNF
◦ Repeatedly apply resolution rule to the resultant clauses
◦ Each clause produced can be inferred from the original premises
◦ If you have a query sentence goal, it follows from the premises if and only if

each of the clauses in CNF(goal) is produced by resolution

• There is a better way . . .

10



Refutation Systems

• If we would like to prove a sentence φ is a theorem (i.e., ` φ), we start with ¬φ
and produce a contradiction

• A “proof by contradiction”
• Similarly, if we wish to prove ψ1, . . . , ψn ` φ, start with ¬φ and together with
ψ1, . . . , ψn produce a contradiction

• Resolution can be used to implement a refutation system
• Repeatedly apply resolution rule until empty clause results

11



Applying Resolution

• Negate conclusion (resolution is a refutation system)
• Convert premises and negated conclusion into CNF (clausal form)
• Repeatedly apply Resolution Rule, Double Negation
• If empty clause results you have a contradiction and can conclude that the

conclusion follows from the premises

12



Resolution — Example 1

(G ∨ H)→ (¬J ∧ ¬K ), G ` ¬J
CNF [(G ∨ H)→ (¬J ∧ ¬K )] ≡ (¬G ∨ ¬J) ∧ (¬H ∨ ¬J) ∧ (¬G ∨ ¬K ) ∧ (¬H ∨ ¬K )
1. ¬G ∨ ¬J [Premise]
2. ¬H ∨ ¬J [Premise]
3. ¬G ∨ ¬K [Premise]
4. ¬H ∨ ¬K [Premise]
5. G [Premise]
6. ¬¬J [¬ Conclusion]
7. J [6. Double Negation]
8. ¬G [1, 7. Resolution]
9. � [5, 8. Resolution]

13



Resolution — Example 2

P → ¬Q, ¬Q → R ` P → R
P → R ≡ ¬P ∨ R
CNF [¬(¬P ∨ R)] ≡ {¬¬P, ¬R}
1. ¬P ∨ ¬Q [Premise]
2. ¬¬Q ∨ R [Premise]
3. ¬¬P [¬ Conclusion]
4. ¬R [¬ Conclusion]
5. P [3. Double Negation]
6. ¬Q [1, 5. Resolution]
7. R [2, 6. Resolution]
8. � [4, 7. Resolution]

14



Resolution — Example 3

` ((P ∨Q) ∧ ¬P)→ Q
CNF [¬(((P ∨Q) ∧ ¬P)→ Q)] ≡ (P ∨Q) ∧ ¬P ∧ ¬Q
1. P ∨Q [¬ Conclusion]
2. ¬P [¬ Conclusion]
3. ¬Q [¬ Conclusion]
4. Q [1, 2. Resolution]
5. � [3, 4. Resolution]

15



Soundness and Completeness — Recap

• An inference procedure (and hence a logic) is sound if and only if it preserves
truth

• In other words ` is sound iff whenever λ ` ρ, then λ |= ρ

• A logic is complete if and only if it is capable of proving all truths
• In other words, whenever λ |= ρ, then λ ` ρ

16



Decidability

• A logic is decidable if and only if there is a mechanical procedure that, when
asked λ ` ρ, can eventually halt and answer “yes” or halt and answer “no”

• Propositional logic is decidable

17



Heuristics in applying Resolution

• Clause elimination — can disregard certain types of clauses
◦ Pure clauses: contain literal L where ¬L doesn’t appear elsewhere
◦ Tautologies: clauses containing both L and ¬L
◦ Subsumed clauses: another clause exists containing a subset of the literals

• Ordering strategies
◦ Unit preference: resolve unit clauses (only one literal) first

• Many others . . .

18



Conclusion

• We have now investigated one knowledge representation and reasoning
formalism

• This means we can draw new conclusions from the knowledge we have; we
can reason

• Have enough to build a knowledge-based agent
• However, propositional logic is a weak language; there are many things we

can’t express in it
• It cannot be used to express knowledge about objects, their properties and

the relationships that exist between objects
• For this purpose we need a more expressive language: first-order logic

19


