
0

Welcome!
COMP1511 18s1

Programming Fundamentals

1COMP1511 18s1
— Lecture 19 —

Stacks + Queues + ADTs
Andrew Bennett

<andrew.bennett@unsw.edu.au>

2Overview
after this lecture, you should be able to…

have a basic understanding of stacks and queues

have a basic understanding of ADTs

know the difference between concrete and abstract types

(note: you shouldn’t be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!) give you the foundations you need to develop these skills. remember: programming is

like learning any other language, it takes consistent and regular practice.)

3Admin

Don’t panic!
assignment 3 out now!

this week’s tute/lab help you get started

week 10 weekly test due thursday

don’t forget about help sessions!
see course website for details

4introducing: stacks

5Stacks
stacks are a type of data structure

(a way of organising data)

a stack is a collection of items such that
the last item to enter is the first one to exit

“last in, first out” (LIFO)

based on the idea of a stack of books, or plates

| | <- next free space

|______|

| 30 |

|______|

| 20 |

|______|

| 10 | <- first added

|______|

6Stack
a stack is a collection of items such that

the last item to enter is the first one to exit

“last in, first out” (LIFO)

…

essential stack operations:

push() – add new item to stack
pop() – remove top item from stack

additional stack operations:

top() – fetch top item (but don’t remove it)
size() – number of items

is_empty()

7Stack Applications
page-visited history in a web browser

undo sequence in a text editor

checking for balanced brackets

HTML tag matching

postfix (RPN) calculator

chain of function calls in a program

8Implementing a Stack
there are several different ways we can implement a stack

(aka actually write the C code to make a stack)

using an array

using a linked list

(+ others)

9Implementing a Stack with an Array
we can use an array to store the stack

by keeping track of where we’re up to in the array

struct stack_internals {

 int array[MAX_SIZE]; // holds the values

 int upto; // the index of the next free slot

};

[][][][][][][] // (the array)

 ^

 upto

10Implementing a Stack with an Array
we can use an array to store the stack

by keeping track of where we’re up to in the array

push(3)

.

.

.

[3][][][][][][]

 ^

 upto

11Implementing a Stack with an Array
we can use an array to store the stack

by keeping track of where we’re up to in the array

push(3)

push(1)

.

.

[3][1][][][][][]

 ^

 upto

12Implementing a Stack with an Array
we can use an array to store the stack

by keeping track of where we’re up to in the array

push(3)

push(1)

push(4)

.

[3][1][4][][][][]

 ^

 upto

13Implementing a Stack with an Array
we can use an array to store the stack

by keeping track of where we’re up to in the array

push(3)

push(1)

push(4)

pop() // returns 4

[3][1][][][][][]

 ^

 upto

14Implementing a Stack with an Array
we can use an array to store the stack

by keeping track of where we’re up to in the array

// making a stack

struct stack_internals s = {0}; // initialise to 0

// pushing "5" to the stack

s.array[s.upto] = 5;

s.upto++;

// popping from the stack

s.upto--;

int value = s.array[s.upto];

// value is 5

15Implementing a Stack with a Linked List
a stack can be implemented using a linked list,

by adding and removing at the head

struct stack_internals {

 struct node *head;

};

push(3)

.

.

.

(3) -> X

 ^ head

16Implementing a Stack with a Linked List
a stack can be implemented using a linked list,

by adding and removing at the head

struct stack_internals {

 struct node *head;

};

push(3)

push(1)

.

.

(1) -> (3) -> X

 ^ head

17Implementing a Stack with a Linked List
a stack can be implemented using a linked list,

by adding and removing at the head

struct stack_internals {

 struct node *head;

};

push(3)

push(1)

push(4)

.

(4) -> (1) -> (3) -> X

 ^ head

18Implementing a Stack with a Linked List
a stack can be implemented using a linked list,

by adding and removing at the head

struct stack_internals {

 struct node *head;

};

push(3)

push(1)

push(4)

pop() // returns 4

(1) -> (3) -> X

 ^ head

19Implementing a Stack with a Linked List
a stack can be implemented using a linked list,

by adding and removing at the head

// making a stack

struct stack_internals s = {0}; // initialise to 0

// pushing "5" to the stack

struct node *node = new_node(5); // make a new node

node->next = s.head; // add before start of list

s.head = node; // update list to start here

// popping from the stack

int value = s->head->data;

struct node *tmp = s->head; // keep track so we can free it

s->head = s->head->next; // update list start

free(tmp);

20Using a Stack
we can use either of these methods to implement a stack

(or another approach!)

I write code to implement a stack,
you need to use a stack, so you use my code

21

but what if the
implementation

changes?

22an aside: USBs
works… anywhere!

23Concrete vs Abstract

struct stack_internals {

 // ...

};

a type is…
concrete

if a user of that type has knowledge of how it works

a type is…
abstract

if a user has no knowledge of how it works

24Concrete vs Abstract

struct stack_internals {

 // ...

};

a concrete type is “right here”:
if you can see the type, you can use it

25Concrete vs Abstract
you cannot change the insides of the type

without breaking current software

we couldn’t, for example, easily switch between stack implementations
(array vs list)

26Abstraction
our old friend, abstraction

use functions to interact with the stack,
push
pop
etc

doesn’t really matter
how the implementation works…
only that the interface is correct.

27Hiding Structures

typedef struct stack_internals *stack;

we can now refer to stack,
without knowing what’s in
struct stack_internals…

we cannot dereference (stab) it
but it can move around the system

as an opaque value.

28

ADTs
Abstract Data Types

separating the implementation from the interface

29implementing a
stack ADT

30Why a Stack ADT?
if we implement our stack as an ADT

we can change the implementation

without affecting how to use the stack

31Stack - Abstract Data Type - C Interface

// use `stack` to refer to a pointer to the stack struct

typedef struct stack_internals *stack;

// pass the pointer into the stack functions

// (rather than trying to modify the struct directly)

stack stack_create(void);

void stack_free(stack stack);

void stack_push(stack stack, int item);

int stack_pop(stack stack);

int stack_is_empty(stack stack);

int stack_top(stack stack);

int stack_size(stack stack);

32Stack - Abstract Data Type - using C Interface
we can only interact with the stack

using its interface functions

stack s;

s = stack_create();

stack_push(s, 10);

stack_push(s, 11);

stack_push(s, 12);

printf("%d\n", stack_size(s)); // prints 3

printf("%d\n", stack_top(s)); // prints 12

printf("%d\n", stack_pop(s)); // prints 12

printf("%d\n", stack_pop(s)); // prints 11

printf("%d\n", stack_pop(s)); // prints 10

33Stack - Abstract Data Type - using C Interface
we can only interact with the stack

using its interface functions

we can’t dereference the pointer or access the struct fields

stack s = stack_create();

// note: if we tried to do this,

// we would get a compile error

// we can't see inside the struct, how do we know

// if it has an `array` field?

s->array[0] = 10;

// how do we know if it has a `size` field?

printf("%d", s->size);

34Stack - Abstract Data Type - using C Interface
implementation of stack is opaque (hidden from user);

user programs can not depend on how stack is implementated.

stack implementation can change
without risk of breaking user programs.

information hiding is crucial
to managing complexity in large software systems.

35Stack - Abstract Data Type - switching
implementations

we can easily change which implementation we use

// inside stack_user.c

stack s = stack_create();

stack_push(s, 5);

stack_push(s, 10);

printf("%d, stack_pop(s));

printf("%d, stack_pop(s));

$ dcc -o stack stack_user.c stack_list.c

$./stack

10

5

$ dcc -o stack stack_user.c stack_array.c

$./stack

10

5

