Noncooperative Games COMP4418 Knowledge Representation and Reasoning

Abdallah Saffidine¹

¹abdallah.saffidine@gmail.com slides design: Haris Aziz

Semester 2, 2017

Matrix Form Games

2 Best response and Nash equilibrium

3 Mixed Strategies

4 Further Reading

Matrix Form Games

2 Best response and Nash equilibrium

3 Mixed Strategies

Further Reading

Both prisoners benefit if they cooperate. If one prisoner defects and the other does not, then the defecting prisoner gets out free!

	cooperate	defect
cooperate	2,2	0,3
defect	3,0	1,1

An *n*-player game (N, A, u) consists of

- Set of players $N=\{1,\ldots,n\}$
- $A = A_1 \times \cdots \times A_n$ where A_i is the action set of player i
 - $a \in A$ is an action profile.
 - $u = (u_1, \ldots, u_n)$ specifies a utility function $u_i : A \to \mathbb{R}$ for each player.

- Actions of player $1 = A_1 = \{a_1^1, a_1^2\}.$
- Actions of player $2 = A_2 = \{a_2^1, a_2^2\}.$

Both prisoners benefit if they cooperate. If one prisoner defects and the other does not, then the defecting prisoner gets out free!

	cooperate	defect
cooperate	2,2	0,3
defect	3,0	1,1

Player 1 (Goal-keeper) wants to match; Player 2 (penalty taker) does not want to match.

	Left	Right
Left	+1,-1	-1,+1
Right	-1,+1	+1,-1

In zero-sum games, there are two players and for all action profiles $a \in A$, $u_1(a) + u_2(a) = 0.$

Example

Example			
	Left	Right	
Left	+1,-1	-1,+1	
Right	-1,+1	+1,-1	
	Heads	Tails	
Heads	1	-1	
Tails	-1	1	

Both players draw if they have the same action. Otherwise, playing Scissor wins against Paper, playing Paper wins against Rock, and playing Rock wins against Scissors.

	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

Player 1 (wife) prefers Ballet over Football. Player 2 (husband) prefers Football over Ballet. Both prefer being together than going alone.

	Ballet	Football
Ballet	2,1	0,0
Football	0,0	1,2

One outcome o' Pareto dominates another outcome o if o' all players prefer o' at least as much as o and at least one player strictly prefers o' to o.

Each game admits at least one Pareto optimal outcome.

Matrix Form Games

2 Best response and Nash equilibrium

3 Mixed Strategies

4 Further Reading

Let
$$a_{-i} = (a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n).$$

Definition (Best Response)

$$a_i' \in BR(a_{-i})$$

iff

$$\forall a_i \in A_i, u_i(a'_i, a_{-i}) \ge u_i(a_i, a_{-i})$$

The best response of a player gives the player maximum possible utility.

Let
$$a_{-i} = (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n).$$

Definition (Best Response)

 $a = (a_1, \ldots, a_n)$ is a (pure) Nash equilibrium iff

 $\forall i, a_i \in BR(a_{-i}).$

A Nash equilibrium is an action profile in which each player plays a best response.

Pure Nash equilibria:

- (Ballet, Ballet)
- (Football, Football)

- The only Nash equilibrium is (defect, defect).
- The outcome of (defect, defect) is Pareto dominated by the outcome of (cooperate, cooperate).

A pure Nash equilibrium may not exist.

Let us assume there are n players and each player has m actions.

- for each of the m^n possible action profiles, check whether some some player out of the n player has a different action among the m actions that gives more utility.
- Total number of steps: $O(m^n m n) = O(m^{n+1}n)$

Matrix Form Games

2 Best response and Nash equilibrium

3 Mixed Strategies

Further Reading

Example (Penalty Shootout)

	Left	Right
Left	1	-1
Right	-1	1

Recall that the possible set of pure actions of each player $i \in N$ is A_i .

• A **pure strategy** is one in which exactly one action is played with probability one.

• A mixed strategy: more than one action is played with non-zero probability. The set of strategies for player i is $S_i = \Delta(A_i)$ where $\Delta(A_i)$ is the set of probability distributions over A_i .

The set of all strategy profiles is $S = S_1 \times \cdots \times S_n$.

We want to analyze the payoff of players under a mixed strategy profile:

$$u_i = \sum_{a \in A} u_i(a) Pr(a \mid s)$$
$$Pr(a \mid s) = \prod_{j \in N} s_j(a_j)$$

Mixed Strategies

We want to analyze the payoff of players under a mixed strategy profile:

$$u_i = \sum_{a \in A} u_i(a) Pr(a \mid s)$$
$$Pr(a \mid s) = \prod_{j \in N} s_j(a_j)$$

Example (Penalty Shootout)			
	Left	Right	
Left	1	-1	
Right	-1	1	

Consider the following strategy profile Player 1 plays Left with probability 0.1 and Right with probability 0.9. Player 2 players Left with probability 0.1 and Right with probability 0.9.

Question: What is the utility of player 1 under the strategy profile?

Abdallah Saffidine (UNSW)

Mixed Strategies

We want to analyze the payoff of players under a mixed strategy profile:

$$u_i = \sum_{a \in A} u_i(a) Pr(a \mid s)$$
$$Pr(a \mid s) = \prod_{j \in N} s_j(a_j)$$

Example (Penalty Shootout)

	Left	Right
Left	1	-1
Right	-1	1

Consider the following strategy profile Player 1 plays Left with probability 0.1 and Right with probability 0.9. Player 2 players Left with probability 0.1 and Right with probability 0.9.

Then $u_1 = (0.1 \times 0.1)1 + (0.1 \times 0.9)(-1) + (0.9 \times 0.1)(-1) + (0.9 \times 0.9)(1) = 0.01 - 0.09 - 0.09 + 0.81 = 0.64$.

Definition (Best Response)

Best response: $s'_i \in BR(s_{-i})$ iff $\forall s_i \in S_i$, $u_i(s'_i, s_{-i}) \ge u_i(s_i, s_{-i})$.

The best response of a player gives the player maximum possible utility.

Definition (Nash equilibrium)

 $s = (s_1, \ldots, s_n)$ is a Nash equilibrium iff $\forall i \in N, s_i \in BR(s_{-i})$.

A Nash equilibrium is an action profile in which each player plays a best response.

Theorem (Nash's Theorem)

A mixed Nash equilibrium always exists.

	Ballet	Football
Ballet	2,1	0,0
Football	0,0	1,2

Battle of the Sexes

	Ballet	Football
Ballet	2,1	0,0
Football	0,0	1,2

- Let us assume that both players play their full support.
- Player 2 plays B with p and F with probability 1 p.
- Player 1 must be indifferent between the actions it plays.

$$2(p) + 0(1 - p) = 0p + 1(1 - p)$$
$$p = 1/3.$$

- Player 1 plays B with q and F with probability 1-q
- Player 2 must be indifferent between the actions it plays.

$$1(q) + 0(1 - q) = 0q + 2(1 - q)$$
$$q = 1/3.$$

Thus the mixed strategies (2/3, 1/3), (1/3, 2/3) are in Nash equilibrium.

For 2-player games, a support profile can be checked for Nash equilibria as follows:

$$\sum_{a_{-i} \in A_{-i}} s_{-i}(a_{-i})u_i(a_i, a_{-i}) = U^* \quad \forall i \in N, a_i \in B_i$$
$$\sum_{a_{-i} \in A_{-i}} s_{-i}(a_{-i})u_i(a_i, a_{-i}) \leq U^* \quad \forall i \in N, a_i \notin B_i$$
$$s_i(a_i) \geq 0 \quad \forall i \in N, a_i \in B_i$$
$$s_i(a_i) = 0 \quad \forall i \in N, a_i \notin B_i$$
$$\sum_{a_i \in A_i} s_i(a_i) = 1$$

When there are more than two players, the constraints are not linear.

Complexity of Computing Nash Equilibrium

PPAD (Polynomial Parity Arguments on Directed graphs) is a complexity class of computational problems for which a solution always exists because of a parity argument on directed graphs.

The class PPAD introduced by Christos Papadimitriou in 1994.

Representative PPAD problem: Given an exponential-size directed graph with no isolated nodes and with every node having in-degree and out-degree at most one described by a polynomial-time computable function f(v) that outputs the predecessor and successor of v, and a node s with degree 1, find a $t \neq s$ that is either a source or a sink.

Theorem (Daskalakis et al., Chen & Deng; 2005)

The problem of finding a Nash equilibrium is PPAD-complete.

- It is believed that P is not equivalent to PPAD.
- PPAD-hardness is viewed as evidence that the problem does not admit an efficient algorithm.

Matrix Form Games

2 Best response and Nash equilibrium

3 Mixed Strategies

4 Further Reading

- K. Leyton-Brown and Y. Shoham, Essentials of Game Theory: A Concise Multidisciplinary Introduction. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2008.
 www.gtessentials.org
- Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. 2009. http://www.masfoundations.org