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Prisoner’s Dilemma

Both prisoners benefit if they cooperate. If one prisoner defects and the other
does not, then the defecting prisoner gets out free!

cooperate defect
cooperate 2,2 0,3

defect 3,0 1,1
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Setup

An n-player game (N,A, u) consists of

Set of players N = {1, . . . , n}
A = A1 × · · ·An where Ai is the action set of player i

a ∈ A is an action profile.
u = (u1, . . . , un) specifies a utility function ui : A → R for each player.
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Bimatrix (2-player) Games
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Actions of player 1=A1 = {a11, a21}.
Actions of player 2=A2 = {a12, a22}.
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Penalty Shootout

Player 1 (Goal-keeper) wants to match; Player 2 (penalty taker) does not want to
match.

Left Right
Left +1,-1 -1,+1

Right -1,+1 +1,-1
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Zero Sum Games

In zero-sum games, there are two players and for all action profiles a ∈ A,
u1(a) + u2(a) = 0.

Example

Left Right
Left +1,-1 -1,+1

Right -1,+1 +1,-1

Heads Tails
Heads 1 -1

Tails -1 1
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Rock-Paper-Scissors

Both players draw if they have the same action. Otherwise, playing Scissor wins
against Paper, playing Paper wins against Rock, and playing Rock wins against
Scissors.

Rock Paper Scissors
Rock 0 -1 1

Paper 1 0 -1
Scissors -1 1 0
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Battle of the Sexes

Player 1 (wife) prefers Ballet over Football. Player 2 (husband) prefers Football
over Ballet. Both prefer being together than going alone.

Ballet Football
Ballet 2,1 0,0

Football 0,0 1,2
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Pareto Optimality

One outcome o′ Pareto dominates another outcome o if o′ all players prefer o′ at
least as much as o and at least one player strictly prefers o′ to o.

Each game admits at least one Pareto optimal outcome.
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Best Response

Let a−i = (a1, . . . , ai−1, ai+1, . . . , an).

Definition (Best Response)

a′i ∈ BR(a−i)

iff
∀ai ∈ Ai, ui(a

′
i, a−i) ≥ ui(ai, a−i)

The best response of a player gives the player maximum possible utility.
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Nash Equilibrium

Let a−i = (a1, . . . , ai−1, ai+1, . . . , an).

Definition (Best Response)

a = (a1, . . . , an) is a (pure) Nash equilibrium iff

∀i, ai ∈ BR(a−i).

A Nash equilibrium is an action profile in which each player plays a best response.
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Battle of the Sexes: Pure Nash Equilibria

Ballet Football
Ballet 2,1 0,0

Football 0,0 1,2

What are the pure Nash equilibria of the game?
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Battle of the Sexes: Pure Nash Equilibria

Ballet Football
Ballet 2,1 0,0

Football 0,0 1,2

Pure Nash equilibria:

(Ballet, Ballet)

(Football, Football)
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Prisoner’s Dilemma

cooperate defect
cooperate 2,2 0,3

defect 3,0 1,1

What are the pure Nash equilibria of the game?
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Prisoner’s Dilemma

cooperate defect
cooperate 2,2 0,3

defect 3,0 1,1

The only Nash equilibrium is (defect, defect).

The outcome of (defect,defect) is Pareto dominated by the outcome of
(cooperate, cooperate).
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Penalty Shootout

Left Right
Left 1 -1

Right -1 1

What are the pure Nash equilibria of the game?
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Penalty Shootout

Left Right
Left 1 -1

Right -1 1

What are the pure Nash equilibria of the game?

A pure Nash equilibrium may not exist.
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Complexity of a Computing a Pure Nash Equilibrium

Let us assume there are n players and each player has m actions.

for each of the mn possible action profiles, check whether some some player
out of the n player has a different action among the m actions that gives
more utility.

Total number of steps: O(mnmn) = O(mn+1n)
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Playing pure actions may not be a good idea

Example (Penalty Shootout)

Left Right
Left 1 -1

Right -1 1
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Mixed Strategies

Recall that the possible set of pure actions of each player i ∈ N is Ai.

A pure strategy is one in which exactly one action is played with probability
one.

A mixed strategy: more than one action is played with non-zero probability.

The set of strategies for player i is Si = ∆(Ai) where ∆(Ai) is the set of
probability distributions over Ai.

The set of all strategy profiles is S = S1 × · · · × Sn.
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Mixed Strategies

We want to analyze the payoff of players under a mixed strategy profile:

ui =
∑
a∈A

ui(a)Pr(a | s)

Pr(a | s) =
∏
j∈N

sj(aj)
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Mixed Strategies

We want to analyze the payoff of players under a mixed strategy profile:

ui =
∑
a∈A

ui(a)Pr(a | s)

Pr(a | s) =
∏
j∈N

sj(aj)

Example (Penalty Shootout)

Left Right
Left 1 -1

Right -1 1

Consider the following strategy profile Player 1 plays Left with probability 0.1 and
Right with probability 0.9. Player 2 players Left with probability 0.1 and Right
with probability 0.9.
Question: What is the utility of player 1 under the strategy profile?
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Mixed Strategies

We want to analyze the payoff of players under a mixed strategy profile:

ui =
∑
a∈A

ui(a)Pr(a | s)

Pr(a | s) =
∏
j∈N

sj(aj)

Example (Penalty Shootout)

Left Right
Left 1 -1

Right -1 1

Consider the following strategy profile Player 1 plays Left with probability 0.1 and
Right with probability 0.9. Player 2 players Left with probability 0.1 and Right
with probability 0.9.
Then u1 = (0.1× 0.1)1 + (0.1× 0.9)(−1) + (0.9× 0.1)(−1) + (0.9× 0.9)(1) =
0.01− 0.09− 0.09 + 0.81 = 0.64 .
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Mixed Strategies

Definition (Best Response)

Best response: s′i ∈ BR(s−i) iff ∀si ∈ Si, ui(s
′
i, s−i) ≥ ui(si, s−i).

The best response of a player gives the player maximum possible utility.

Definition (Nash equilibrium)

s = (s1, . . . , sn) is a Nash equilibrium iff ∀i ∈ N , si ∈ BR(s−i).

A Nash equilibrium is an action profile in which each player plays a best response.
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Nash’s Theorem

Theorem (Nash’s Theorem)

A mixed Nash equilibrium always exists.
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Battle of the Sexes

Ballet Football
Ballet 2,1 0,0

Football 0,0 1,2
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Battle of the Sexes

Ballet Football
Ballet 2,1 0,0

Football 0,0 1,2
Let us assume that both players play their full support.

Player 2 plays B with p and F with probability 1− p.

Player 1 must be indifferent between the actions it plays.

2(p) + 0(1− p) = 0p + 1(1− p)

p = 1/3.

Player 1 plays B with q and F with probability 1− q

Player 2 must be indifferent between the actions it plays.

1(q) + 0(1− q) = 0q + 2(1− q)

q = 1/3.

Thus the mixed strategies (2/3, 1/3), (1/3, 2/3) are in Nash equilibrium.
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Support Enumeration Algorithm

For 2-player games, a support profile can be checked for Nash equilibria as follows:

∑
a−i∈A−i

s−i(a−i)ui(ai, a−i) = U∗ ∀i ∈ N, ai ∈ Bi∑
a−i∈A−i

s−i(a−i)ui(ai, a−i) ≤ U∗ ∀i ∈ N, ai /∈ Bi

si(ai) ≥ 0 ∀i ∈ N, ai ∈ Bi

si(ai) = 0 ∀i ∈ N, ai /∈ Bi∑
ai∈Ai

si(ai) = 1

When there are more than two players, the constraints are not linear.
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Complexity of Computing Nash Equilibrium

PPAD (Polynomial Parity Arguments on Directed graphs) is a complexity class of
computational problems for which a solution always exists because of a parity
argument on directed graphs.
The class PPAD introduced by Christos Papadimitriou in 1994.
Representative PPAD problem: Given an exponential-size directed graph with
no isolated nodes and with every node having in-degree and out-degree at most
one described by a polynomial-time computable function f(v) that outputs the
predecessor and successor of v, and a node s with degree 1, find a t 6= s that is
either a source or a sink.

Theorem (Daskalakis et al., Chen & Deng; 2005)

The problem of finding a Nash equilibrium is PPAD-complete.

It is believed that P is not equivalent to PPAD.

PPAD-hardness is viewed as evidence that the problem does not admit an
efficient algorithm.
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Reading

K. Leyton-Brown and Y. Shoham, Essentials of Game Theory: A Concise
Multidisciplinary Introduction. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2008.
www.gtessentials.org

Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. 2009.
http://www.masfoundations.org
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