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Quiz 4

1. Which HTTP method is suitable for updating resources?

- PUT
- UPDATE
- POST

« POST and OPTIONS




Quiz 4

2. POST is neither idempotent nor safe operation

* True

e False




Quiz 4

3. Having Uniform Interfaces in RESTful Services mean

* The developers do not have to implement the operations as
they are standards

* If the conventions are properly followed, understanding the
interface is easy

* The developers can build more secure applications

« Standard data types for HTTP operations




Quiz 4

4. Which of the following is correct of a resource in RESTful
services

* A resource is not to be updated by the client application to
maintain statelessness

* Aresource can have many representations

* Aresource is a collection of hidden data set managed by a
RESTful service




Quiz 4

5. Which one of the following is both Safe and Idempotent?
HTTP DELETE

HTTP PATCH

HTTP GET

-HTTP PUT
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Supervised Learning

We are given input samples (X) and output
samples (y) of a function y = f(X).

We would like to “learn” f, and evaluate it on new
data.

 Classification: y is discrete (class labels).
*Regression: y is continuous, e.g. linear regression.




Supervised Learning

Given training data {(x1,Y1),..., (XN, YN )}

N input/output pairs; x;- input, y;- output/label
Xjis a vector consisting of D features

Also called attributes or dimensions Features can be discrete or
continuous

Xim denotes the m-th feature of x;

Forms of the output:

v.e{1l,..., C} for classification; a discrete variable
y; € R for regression; a continuous (real-valued) variable

Goal: predict the output y for an unseen test example x
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Linear Regression

Supervised Learning




Linear Regression

We want to find the “best” line (linear function
y=f(X)) to explain the data.

y | ot

15
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Linear Regression

The predicted value of y is given by:

p
y= Bo+ szBj
=1

The vector of coefficients 3 is the regression model.
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Linear Regression

Simple linear regression
Y=0B0+p1X1+¢
Multiple linear regression

Y = B0 + B1X1 + B2X2 + ¢

13
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Linear Regression

The regression formula 9 = £, + Z] 1 ],B] + €

e.g.,]=1 Random error

V= Bo + X151 "'5/

/ predictor Slope of the line
Intercept (where the line crosses y-axis)

The slope and intercept of the line are called regression
coefficients, model parameters

Our goal is to estimate the model parameters
N

Min SS(8) = ) (i — Xif)?
=1
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Least Square Error Solution

yi = Bo T Bix; + €, i=1,2,...,n Y

Observed value
Data (y)

To estimate ($0,81) , we find values that
minimize squared error

Estimated

n regression line

L= Zlezz = D (vi— Bo — B)*

=1

Solution:
X

oL n i i R ~ n B n
o= — _» = B — Bix) =0 nBo + B1 D = D W
9B [Ro.B: ,=21(y Bo = Br) ‘ i=1 =

oL N . 5 ¢ X+ x; = iXi
P P :_22(%_30_31%)%‘:0 Bogf Blz ;y
By [Bop: =
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Least Square Error Solution

The least squares estimates of the intercept and slope in the simple linear
regression model are

o>
)

— B
n (E NE)

Eyzx o n




Linear Regression
The regression formula 9 = S, + Z] " ,,B,

If X, = 1, can be written as a matrix product with X a row

vector:
y=Xp
We get this by writing all of the input samples in a single
matrix X:
X11 Xln
l.e. rows of X = : :
Xm1 = Xmn

are columns of X are

17
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Least Squares Solution

The most common measure of fit between the line and the
data is the least-squares fit.

There is a good reason for this: If the points are generated by
an ideal line with additive Gaussian noise, the least
squares solution is the maximum likelihood solution.

Probability of a point y, is Pr(y;) = exp( b=%;p) ) and the

202

probability for all points is the product over j of Pr(y;).

2
We can easily maximize the log of this expression e ’;i’ﬂ )

for one point, or the sum of this expression at all points.

18
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Least Squares Solution

To determine the model parameters 8 from some data, we
write down the Sum of Squares:

N
SS(B) = ) (i — Xif)?

or symbolically SS(B) = (y — XB)'(y — XpB). To minimize it,
take the derivative wrt § which gives:

X'"(y - XB) =0
And if X”X is non-singular, the unique solution is:
B = X"X)"XTy
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Least Squares Solutions

The exact method requires us to invert a matrix (X’X)
whose size is M? for M features and takes time O(M?3).
This is too big for large feature spaces like text or event
data.

Gradient methods reduce the SS error using the derivative
wrt

N
RSS(B) = ) (v — Bxp)?
=1

which is
V =X"(y - XB)

20
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B
R2-values and P-values

We can always fit a linear model to any dataset, but how do
we know if there is a real linear relationship?

T T T T T T T T T T T T T T T T
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
X4 Xo

12 12
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4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
X3 X4
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R2-values

Approach: Measure how much the total “noise” (variance)
Is reduced when we include the line as an offset.

R-squared: a suitable measure. Let § = X 8 be a predicted
value, and y be the sample mean. Then the R-squared
value is

2y — 5’1‘)2
Xy — y)?

And can be described as the fraction of the total variance
not explained by the model.

R? =1-

RZ = 0: bad model. No evidence of a linear relationship.

,» R?=1: good model. The line perfectly fits the data.
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R-squared

5 ( 5)? Small if good fit
Yi — i

Xy —¥)?

Line of

Line of y
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What R-squared value would you expect under the null hypothesis ?



R2-values and P-values

Statistic: From R-squared we can derive another statistic
(using degrees of freedom) that has a standard
distribution called an F-distribution.

From the CDF for the F-distribution, we can derive a P-
value for the data.

The P-value is, as usual, the probability of observing the
data under the null hypothesis of no linear relationship.

If p is small, say less than 0.05, we conclude that there is a
linear relationship.

24
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Logistic Regression

Supervised Learning

25 Credit to Jeff Howbert
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Logistic regression

- Name is somewhat misleading. Really a technique
for classification, not regression.

— “Regression” comes from fact that we fit a linear
model to the feature space.

— logit regression, maximum-entropy classification,
log-linear classifier

- Involves a more probabilistic view of
classification.
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Modeling binary data

Often in medical studies, we encounter outcomes that are not
continous, but instead fall into 1 of 2 categories. For example:

Disease status (disease vs. no disease)

Alive or dead

Low birth weight

Improved health status
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Modeling binary data

In these cases, we have a binary outcome

_ |0 with probability 1 — i;
Yi =11 with probability i;

where
Elyi] = m;
and
varly; = (1 — ;).

Usually, one of the categories is the outcome of interest,
death or disease. This category is usually coded as 1.

like




Modeling binary data

We can use linear regression to model this outcome,
but this can present several problems as we will see.

Usingthe linearmodelapproach, we relate the
expected value of yi to a predictor xi as

E[yi] = B0 + B1xi

Just looking at this relationship, we can see a potential
problem. What is it?

29
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Modeling binary data

Over small ranges of the predictor or when the relationship
between the predictor and the outcome is not strong, this
may not be troubling.
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Modeling binary data

However, if the association is strong, potential problems are
more evident.

o
- ® o €800 00 00000000000 ©

We could put constraints on the fs that would prevent this from
happening, but this would be complicated and probably not the best
way to address this problem.
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Different ways of expressing probability

- Consider a two-outcome probability space, where:
-p(Oq)=p

-p(02)=1-p=q
- Can express probability of O, as:

notation rang equivalents
e
standard probability P 0 0.5 1
odds p/q 0 1 + o0
log odds (logit) | log(p/q) - 0 0 + oo

32




Log odds

- Numeric treatment of outcomes O, and O, is
equivalent

— If neither outcome is favored over the other, then log
odds = 0.

— If one outcome is favored with log odds = x, then
other outcome is disfavored with log odds = -x.

- Especially useful in domains where relative
probabilities can be miniscule

— Example: multiple sequence alignment in
computational biology

33
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From probability to log odds
(and back again)

z = log (f%p) logit function

logistic function
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Standard logistic function

| T

©
tn




Logistic regression

. Scenario:

— A multidimensional feature space (features
can be categorical or continuous).

— QOutcome is discrete, not continuous.
¢ We’'ll focus on case of two classes.

— It seems plausible that a linear decision
boundary (hyperplane) will give good
predictive accuracy.

36
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Using a logistic regression model

- Model consists of a vector B in d-dimensional feature
space

- For a point x in feature space, project it onto 8 to convert
it into a real number z in the range - wto + w0

z=a+p-x=a+pPBx+...+B,x,

- Map z to the range 0 to 1 using the logistic function
p=1/(1+e7)

- Overall, logistic regression maps a point x in d-
dimensional feature space to a value in the range 0 to 1




Using a logistic regression model

- Can interpret prediction from a logistic regression
model as:

— A probability of class membership

— A class assignment, by applying threshold to
probability

othreshold represents decision boundary in feature
space

38




Training a logistic regression model

- Need to optimize 3 so the model gives the best
possible reproduction of training set labels

— Usually done by numerical approximation of
maximum likelihood

— On really large datasets, may use stochastic
gradient descent

39




Logistic regression in one dimension

a) Example: APACHE II Score and Mortality in Sepsis

The following figure shows 30 day mortality in a sample of septic
patients as a function of their baseline APACHE II Score.
Patients are coded as 1 or 0 depending on whether they are dead
or alive 1n 30 days. respectively.

Died 1 88 88 885 SBBBBBBBEN

30 Day Mortality in Patients with Sepsis

Survived (- ® ssesssssssssssss ss @ . P
| L B B BN BN N L e BN NN BN G |
0 5 10 15 20 25 30 35 40 45

APACHE Il Score at Baseline

40
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Logistic regression in one dimension

We wish to predict death from baseline APACHE II score in these
patients.

Let m(x) be the probability that a patient with score x will die.

Note that linear regression would not work well here since 1t could
produce probabilities less than zero or greater than one.

Died 1 oo

30 Day Mortali Fatients with Sepsis

15 20 25 30 45
AFPACHE Il Score at Baseline

Survived 0O * SESSRETES
0
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Logistic regression in one dimension

- Parameters control shape and location of sigmoid curve
— o controls location of midpoint
— B controls slope of rise

m(x) = exp(o+Px) / (1+exp(o+ Px))

0 S 10 15 20 25 30 35 40
X

When v = —q/ B L+ Bx = (0 and hence J'[{:k‘.:l = l’.-"l(]_ + 1) =05
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Logistic regression in one dimension

Data that has a sharp survival cut off point between patients who live
or die should have a large value of B.

Dmd1] '_******""*‘**jr‘——.‘—#"—'f“'ffffi
Survived 0
Ty ey ey rrrrerergyeerrerrg
0 ) 10 15 25 30 35 40

X

Data with a lengthy transition from survival to death should have a low

value of (.

Died 1 sesee 'Y o0 S0® SGSS® s

Survived 0 . ® 299 S99 LR L 3 L L L L
|—l—|—|+|—|—H—l—|+H+|+l—|+|—|—|—|—|—|—|—|—|—|—|—|—|—l—l—|—H—H—|

10 15 20 20 30 39 40
X
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Logistic regression in one dimension
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Figure 10-3. The solid curved line is called a logistic regression curve. The
vertical axis measures the probability that an Old Testament passage is narra-
tive, based on the use of preterite verbs. The probability is zero for poetry and
unity or one for narrative. Passages with high preterite verb counts, falling to
the right of the vertical dotted line, are likely narrative. The triangle on the up-
per right represents Genesis 1:1-2:3, which is clearly literal, narrative history.




Logistic regression in two dimensions

Subset of Fisher iris dataset
— Two classes
— First two columns (SL, SW) decision boundary

Classification with Figher Training Data

& A A T
¥ Fisher versicolor | ¥ Figher versicalo
3BH & Fisher virginica A 3BE A Fishervirginica
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24F v Y
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221 T v
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Logistic regression in two dimensions

Interpreting the model vector of coefficients

« From MATLAB: B = [ 13.0460 -1.9024 -0.4047 ]

- a=B(1),B=[p:1P2]=B(2:3) Clasifcation with Fsher Training D
» a, B define location and orientation oo, g

1 & Fisherversicolor

of decision boundary 38| & Fishersirginica

3B

— - o Is distance of decision
boundary from origin

34

L
g}
T

— decision boundary is
perpendicular to

- magnitude of B defines gradient 28
of probabilities between 0 and 1 2*

Sepal Width
[h)

i
6.5
Sepal Length
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Logistic regression in two dimensions

Classification with Fisher Training Data

W Fisher versicolor [
A Fisher virginica |

38}

36k
34

32f

Sepal Width

28

Sepal Length
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Logistic regression

- Advantages:

Makes no assumptions about distributions of classes in feature
space

Easily extended to multiple classes (multinomial regression)
Natural probabilistic view of class predictions

Quick to train

Very fast at classifying unknown records

Good accuracy for many simple data sets

Resistant to overfitting

Can interpret model coefficients as indicators of feature
importance

- Disadvantages:

Linear decision boundary




49

k-Nearest Neighbour

Supervised Learning




k-Nearest Neighbors

Given a query item: A
Find k closest matches
In a labeled dataset |
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k-Nearest Neighbors

Given a query item:
Find k closest matches

%' Return the most



k-Nearest Neighbors

k = 3 votes for “cat”




k-Nearest Neighbors

2 votes for cat, |
1 each for Buffalo, |
Deer, Lion

7

Cat wins...
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Nearest Neighbor Algorithm

* Learning Algorithm:
— Store training examples
* Prediction Algorithm:

— To classify a new example x by finding the training
example (x},y') that is nearest to x

— Guess theclassy =y
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Instance based classifiers

Set of Stored Cases

Atrl

AtrN

Class

A

| Q] »|] Q| ®| ™

 Store the training samples

* Use training samples to
predict the class label of
unseen samples

Unseen Case

Atrl

AtrN

YYYYYY



Instance based classifiers

- Examples:

— Rote learner
ememorize entire training data

eperform classification only if attributes of test
sample match one of the training samples exactly

— Nearest neighbor

euse k “closest” samples (nearest neighbors) to
perform classification

56
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Nearest neighbor classifiers

- Basic idea:

— |If it walks like a duck, quacks like a duck, then
it's probably a duck

- =~

\ compute
g

training " NS .~ choose k of the

~
samples . o= .7 “nearest” samples
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Nearest neighbor classifiers

Unknown record

- ’,’I:I—\\ -
| I

\-|-_|_/

N\

-~
T4

Requires three inputs:

1. The set of stored
samples

2. Distance metric to
compute distance
between samples

3. The value of k, the
number of nearest
neighbors to retrieve
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Nearest neighbor classifiers

Unknown record

- ’,’I:I—\\
| I

_I_
V] :|_//
T4

To classify unknown record:

1. Compute distance to
other training records

2. ldentify k nearest
neighbors

3. Use class labels of
nearest neighbors to
determine the class
label of unknown record
(e.g., by taking maijority
vote)
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Definition of nearest neighbor

’4"'~~
-+ '¢‘-'~‘ + 'O \‘ -+
- ¢-§+ — 4 +‘ - + )
& LY Y i — | '] —
1 [] 1 [
l\ X ' X , : X :
~..’! . " “ '
A Y
LY 4 + [N
— + + — ~.-_'I_ =~ -h" +
S ygm=’
+ + + + - -

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

k-nearest neighbors of a sample x are datapoints
that have the k smallest distances to x




K--Nearest Neighbor Methods

« Toclassify a new input vector x, examine the k--closest
training data points to x and assign the object to the most
frequently occurring class

common values fork: 3,5

Why?

61
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Example results for k--NN

Misclassification Errors

o
™
o
wv
N
o
o
N
o
©
[}
=
° —— Test Error
© —— 10-fold CV
g B ———  Training Error
— — Bayes Error
-
o
T T T T T T I
0 5 10 15 20 25 30
Number of Neighbors

[Figures from Has8e and Tibshirani, Chapter 13]

7-Nearest Neighbors




Nearest Neighbor

When to Consider
— Instance map to points in Rn
— Less than 20 attributes per instance
— Lots of training data
Advantages
— Training is very fast
— Learn complex target functions
— Do not lose information
Disadvantages
— Slow at query
— Easily fooled by irrelevant attributes

63
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Issues

* Distance measure
— Most common: Euclidean

* Choosing k
— Increasing k reduces variance, increases bias

* For high--dimensional space, problem that the nearest
neighbor may not be very close at all!

* Memory--based technique. Must make a pass through
the data for each classification. This can be prohibitive
for large data sets.




Nearest Neighbors

Training example in Euclidean space: x eR?

Idea: The value of the target function for a new query is estimated from the
known value(s) of the nearest training example(s)

Distance typically defined to be Euclidean:

d
@ — x(b)”2 _ z(xj(a) _ xj(b))z
j=1

\

Algorithm:

1. Find example (x* t*) (from the stored training set) closest to
the test instance x. That is:

x*= argmin distance(x"), x)
x() etrain. set

2. Output y =t~

o Note: we don't really need to compute the square root. Why?




Nearest Neighbors: Decision Boundaries

Nearest neighbor algorithm does not explicitly compute decision boundaries,
but these can be inferred

Decision boundaries: Voronoi diagram visualization

show how input space divided into classes
each line segment is equidistant between two points of opposite classes

%0 UNSW



Example: 2D decision boundary

10+ . I

height (cm)
(00
i
/ S
| ..
O

4 6 8 10
width (cm)
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Example: 3D decision boundary




Nearest Neighbor approaches
can work with multi-modal data

©9 [Slide credit: O. Veksler]




k-Nearest Neighbors

noisy sample

[ ]
] ]
every example in the blue every example in the blue
shaded area will be shaded area will be classified
misclassified as the blue class correctly as the red class

Nearest neighbors sensitive to mis-labeled data (“class noise”). Solution?
Smooth by having k nearest neighbors vote

70 [Pic by Olga Veksler]
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k-Nearest Neighbors

Algorithm (kNN):

1. Find k examples {x), t(/ )} closest to the test instance x
2. Classification output is majority class

k
y = argmaxz 5(t(z), t(r))

t(2)

[Pic by Olga Veksler]




k-Nearest Neighbors

How do we choose k?

Larger kK may lead to better performance

But if weset k too large we may end up looking at samples that are not
neighbors (are far away from the query)

We can use cross-validation to find k

Rule of thumb is k < sqrt(n), where n is the number of training examples

[Slide credit: O. Veksler]
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k-Nearest Neighbors: Issues & Remedies

If some attributes (coordinates of x) have larger ranges, they
are treated as more important

» normalize scale

»Simple option: Linearly scale the range of each feature to be, e.g., in
range [0,1]

*Linearly scale each dimension to have 0 mean and variance 1 (compute
mean y and variance o for an attribute x; and scale: (xj— m)/0)

be careful: sometimes scale matters

73
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k-Nearest Neighbors: Issues & Remedies

Irrelevant, correlated attributes add noise to distance measure

~eliminate some attributes
~or vary and possibly adapt weight of attributes

Non-metric attributes (symbols)

*Hamming distance




k-Nearest Neighbors: Issues (Complexity) &
Remedies

Expensive at test time: To find one nearest neighbor of a query point x, we
must compute the distance to all N training examples. Complexity: O(kdN)
for KNN

Use subset of dimensions

Pre-sort training examples into fast data structures (e.g., kd-trees)
Compute only an approximate distance (e.g., LSH)

Remove redundant data (e.g., condensing)

75

[Slide credit: David Claus]
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k-Nearest Neighbors: Issues (Complexity) &
Remedies

Storage Requirements: Must store all training data

Remove redundant data (e.g., condensing)
Pre-sorting often increases the storage requirements

High Dimensional Data: “Curse of Dimensionality”

Required amount of training data increases exponentially with

dimension
Computational cost also increases

[Slide credit: David Claus]




k-Nearest Neighbors Remedies:
Remove Redundancy

If all Voronoi neighbors have the same class, a sample is useless, remove it

[Slide credit: O. Veksler]
77




Example: Digit Classification

Decent performance when lots of data

D\dB34507258 7

 Yann LeCunn — MNIST Digit
Recognition

— Handwritten digits
— 28x28 pixel images: d = 784
— 60,000 training samples
— 10,000 test samples
» Nearest neighbour is competitive

78

Test Error Rate (%)

Linear classifier (1-layer NN) 32
K-nearest-neighbors, Euclidean 5.0
K-nearest-neighbors, Euclidean, deskewed 2.4
K-NN, Tangent Distance, 16x16 1.1
K-NN, shape context matching 0.67
1000 RBF + linear classifier 3.6
SVM deg 4 polynomial I
2-layer NN, 300 hidden units 4.7
2-layer NN, 300 HU, [deskewing] 1.6
LeNet-5, [distortions] 0.8
Boosted LeNet-4, [distortions] 0.7

=

[
E{w’]
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Fun Example:
Where on Earth is this Photo From?

Problem: Where (e.g., which country or GPS location) was
this picture taken?

79 [Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single
image. CVPR’08. Project page: http://graphics.cs.cmu.edu/projects/im2gps/]



http://graphics.cs.cmu.edu/projects/im2gps/

Fun Example:
Where on Earth is this Photo From?

Problem: Where (e.g., which country or GPS location) was this picture
taken?

Get 6M images from Flickr with GPs info (dense sampling across world)
Represent each image with meaningful features

Do kNN!

80 [Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single
image. CVPR’08. Project page: ]



http://graphics.cs.cmu.edu/projects/im2gps/

Fun Example:
Where on Earth is this Photo From?

Problem: Where (eg, which country or GPS location) was this picture
taken?

Get 6M images from Flickr with gps info (dense sampling across world)
Represent each image with meaningful features
Do kNN (large k better, they use k = 120)!

81 [Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single
image. CVPR’08. Project page: ]



http://graphics.cs.cmu.edu/projects/im2gps/

Example: PEBLS

- PEBLS: Parallel Examplar-Based Learning
System (Cost & Salzberq)

— Works with both continuous and nominal
features

s+ or nominal features, distance between two
nominal values is computed using modified value
difference metric (MVDM)

— Each sample is assigned a weight factor
— Number of nearest neighbor, k = 1

82




Example: PEBLS

Tid Refund Marital

Taxable

Distance between nominal attribute values:

=|2/4-0/4|+|2/4-4/4]=1
d(Single,Divorced)

=2/4-1/2|+|2/4-1/2|=0
d(Married,Divorced)

=104 -1/2|+|4/4-1/2| =1
d(Refund=Yes,Refund=No)

=|0/3-3/7|+|3/3-4/7|=6/T

ny;

n,,;

d(V,, V)=,

n n,

Status Income Cheat ] .
d(Single,Married)

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced | 95K Yes

6 No Married |60K No

7 Yes Divorced |220K No

8 No Single 85K Yes

9 No Married |75K No

10 [No Single 90K Yes

Marital Status Refund
Class : : : Class

Single | Married | Divorced Yes No
Yes 2 0 1 Yes 0 3
No 2 4 1 No 3 4



Example: PEBLS

Tid Refund Marital Taxable

Status Income Cheat

X |Yes Single 125K No
Y [No Married |100K No

Distance between record X and record Y:

d
AX,Y)=wyw, > d(X,.Y,)’
i=1

where- _ Number of times X is used for prediction
W p—

* Number of times X predicts correctly

wy =1 if X makes accurate prediction most of the time

wy > 1 if X is not reliable for making predictions

84
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K-NN Summary

height (cm)

width (cm)

Naturally forms complex decision boundaries; adapts to data density
If we have lots of samples, KNN typically works well

Problems:
Sensitive to class noise
Sensitive to scales of attributes
Distances are less meaningful in high dimensions
Scales linearly with number of examples
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K-NN Summary

height (cm)

width (cm)

Naturally forms complex decision boundaries; adapts to data density
If we have lots of samples, KNN typically works well

Problems:
Sensitive to class noise
Sensitive to scales of attributes
Distances are less meaningful in high dimensions
Scales linearly with number of examples

Inductive Bias: What kind of decision boundaries do we expect to find?
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Decision boundaries in global vs. local
models

linear regression 15-nearest neighbor 1-nearest neighbor
* global * local

- stable  accurate

* can be inaccurate * unstable

What ultimately matters: GENERALIZATION




KNN - summary

Non-parametric: makes no assumptions about the probability
distribution the examples come from
Does not assume data is linearly separable
Derives decision rule directly from training data
“Lazy learning”:
During learning little “work” is done by the algorithm: the training
instances are simply stored in memory in some efficient manner.

During prediction the test instance is compared to the training
instances, the neighborhood is calculated, and the majority label

assigned
No information discarded: “exceptional” and low frequency training

instances are available for prediction
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kNN Demo

http://vision.stanford.edu/teaching/cs231n-demos/knn/



http://vision.stanford.edu/teaching/cs231n-demos/knn/
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