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Quiz 4

1. Which HTTP method is suitable for updating resources?

• PUT

• UPDATE

• POST

• POST and OPTIONS
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Quiz 4

2. POST is neither idempotent nor safe operation

• True

• False
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Quiz 4

3. Having Uniform Interfaces in RESTful Services mean

• The developers do not have to implement the operations as 
they are standards

• If the conventions are properly followed, understanding the 
interface is easy

• The developers can build more secure applications

• Standard data types for HTTP operations
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Quiz 4

4. Which of the following is correct of a resource in RESTful 
services
• A resource is not to be updated by the client application to 
maintain statelessness

• A resource can have many representations

• A resource is a collection of hidden data set managed by a 
RESTful service
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Quiz 4

5. Which one of the following is both Safe and Idempotent?

• HTTP DELETE

• HTTP PATCH

• HTTP GET

• HTTP PUT
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Supervised Learning
COMP9321 2019T1



8

Supervised Learning

We are given input samples (X) and output 
samples (y) of a function y = f(X). 

We would like to “learn” f, and evaluate it on new 
data. 

• Classification: y is discrete (class labels).
• Regression: y is continuous, e.g. linear regression.
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Supervised Learning
Given training data {(x1, y1),... , (xN , yN )}

N input/output pairs; xi - input, yi - output/label
xi is a vector consisting of D features  

Also called attributes or dimensions  Features can be discrete or 
continuous

xim denotes the m-th feature of xi

Forms of the output:
yi ∈ {1 , . . . ,  C }  for classification; a discrete variable
yi ∈ R for regression; a continuous (real-valued) variable

Goal: predict the output y for an unseen test example x
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Linear Regression
Supervised Learning



11

Linear Regression

We want to find the “best” line (linear function 
y=f(X)) to explain the data.

X

y

Presenter
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Linear Regression

The predicted value of y is given by:

�𝑦𝑦 = �̂�𝛽0 + �
𝑗𝑗=1

𝑝𝑝

𝑋𝑋𝑗𝑗�̂�𝛽𝑗𝑗

The vector of coefficients �̂�𝛽 is the regression model.
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Linear Regression
Simple linear regression 

Y = β0 + β1X1 + ε

Multiple linear regression

Y = β0 + β1X1 + β2X2 + ε
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Linear Regression
The regression formula   �𝑦𝑦 = �̂�𝛽0 + ∑𝑗𝑗=1

𝑝𝑝 𝑋𝑋𝑗𝑗�̂�𝛽𝑗𝑗 + 𝜀𝜀
e.g., j = 1                                                       Random error

�𝑦𝑦 = �̂�𝛽0 + 𝑋𝑋1�̂�𝛽1 + 𝜀𝜀

predictor                     Slope of the line
Intercept (where the line crosses y-axis) 

The slope and intercept of the line are called regression 
coefficients, model parameters 

Our goal is to estimate the model parameters

Min SS 𝛽𝛽 = �
𝑖𝑖=1

𝑁𝑁

𝑦𝑦𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽𝛽 2
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Least Square Error Solution

To estimate (β0,β1) , we find values that 
minimize squared error

Solution:
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Least Square Error Solution

The least squares estimates of the intercept and slope in the simple linear 
regression model are
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Linear Regression
The regression formula   �𝑦𝑦 = �̂�𝛽0 + ∑𝑗𝑗=1

𝑝𝑝 𝑋𝑋𝑗𝑗�̂�𝛽𝑗𝑗

if 𝑋𝑋0 = 1, can be written as a matrix product with X a row 
vector: 

�𝑦𝑦 = X �̂�𝛽
We get this by writing all of the input samples in a single 

matrix X:

i.e. rows of 𝐗𝐗 =
𝑋𝑋11 ⋯ 𝑋𝑋1𝑛𝑛
⋮ ⋱ ⋮

𝑋𝑋𝑚𝑚1 ⋯ 𝑋𝑋𝑚𝑚𝑛𝑛

are distinct observations, columns of X are input 
features. 
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Least Squares Solution
The most common measure of fit between the line and the 

data is the least-squares fit. 

There is a good reason for this: If the points are generated by 
an ideal line with additive Gaussian noise, the least 
squares solution is the maximum likelihood solution. 

Probability of a point yj is Pr 𝑦𝑦𝑗𝑗 = exp − 𝑦𝑦𝑗𝑗−𝑋𝑋𝑗𝑗𝛽𝛽
2

2𝜎𝜎2
and the 

probability for all points is the product over j of Pr 𝑦𝑦𝑗𝑗 .

We can easily maximize the log of this expression − 𝑦𝑦𝑗𝑗−𝑋𝑋𝑗𝑗𝛽𝛽
2

2𝜎𝜎2
for one point, or the sum of this expression at all points. 
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Least Squares Solution
To determine the model parameters �̂�𝛽 from some data, we 

write down the Sum of Squares:

SS 𝛽𝛽 = �
𝑖𝑖=1

𝑁𝑁

𝑦𝑦𝑖𝑖 − 𝑋𝑋𝑖𝑖𝛽𝛽 2

or symbolically SS 𝛽𝛽 = 𝐲𝐲 − 𝐗𝐗𝛽𝛽 𝑇𝑇 𝐲𝐲 − 𝐗𝐗𝛽𝛽 . To minimize it, 
take the derivative wrt 𝛽𝛽 which gives:

𝐗𝐗𝑇𝑇 𝐲𝐲 − 𝐗𝐗𝛽𝛽 = 0

And if 𝐗𝐗𝑇𝑇𝐗𝐗 is non-singular, the unique solution is:

�̂�𝛽 = 𝐗𝐗𝑇𝑇𝐗𝐗 −1𝐗𝐗𝑇𝑇𝐲𝐲
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Least Squares Solutions
The exact method requires us to invert a matrix 𝐗𝐗𝑇𝑇𝐗𝐗

whose size is M2 for M features and takes time O(M3). 
This is too big for large feature spaces like text or event 
data.  

Gradient methods reduce the SS error using the derivative 
wrt 𝛽𝛽

RSS 𝛽𝛽 = �
𝑖𝑖=1

𝑁𝑁

𝑦𝑦𝑖𝑖 − 𝛽𝛽𝑥𝑥𝑖𝑖 2

which is
𝛻𝛻 = 𝐗𝐗𝑇𝑇 𝐲𝐲 − 𝐗𝐗𝛽𝛽
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R2-values and P-values
We can always fit a linear model to any dataset, but how do 

we know if there is a real linear relationship? 
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Approach: Measure how much the total “noise” (variance) 
is reduced when we include the line as an offset. 

R-squared: a suitable measure. Let �𝑦𝑦 = X �̂�𝛽 be a predicted 
value, and �𝑦𝑦 be the sample mean. Then the R-squared 
value is

𝑅𝑅2 = 1 −
∑ 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

∑ 𝑦𝑦𝑖𝑖 − �𝑦𝑦 2

And can be described as the fraction of the total variance 
not explained by the model.

R2 = 0: bad model. No evidence of a linear relationship.

R2 = 1: good model. The line perfectly fits the data. 

R2-values
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𝑅𝑅2 = 1 −
∑ 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

∑ 𝑦𝑦𝑖𝑖 − �𝑦𝑦 2

R-squared

X

y
Line  of �𝑦𝑦

Line  of �𝑦𝑦

Small if good fit

Presenter
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Statistic: From R-squared we can derive another statistic 
(using degrees of freedom) that has a standard 
distribution called an F-distribution. 

From the CDF for the F-distribution, we can derive a P-
value for the data. 

The P-value is, as usual, the probability of observing the 
data under the null hypothesis of no linear relationship. 

If p is small, say less than 0.05, we conclude that there is a 
linear relationship. 

R2-values and P-values

Presenter
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Logistic Regression
Supervised Learning

Credit to Jeff Howbert
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Logistic regression

 Name is somewhat misleading. Really a technique 
for classification, not regression.
– “Regression” comes from fact that we fit a  linear 

model to the feature space.
– logit regression, maximum-entropy classification, 

log-linear classifier
 Involves a more probabilistic view of  

classification.
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Modeling binary data

Often in medical studies, we encounter outcomes that are  not 
continous, but instead fall into 1 of 2 categories. For  example:

• Disease status (disease vs. no disease)

• Alive or dead

• Low birth weight

• Improved health status
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Modeling binary data
In these cases, we have a binary outcome

𝑦𝑦𝑖𝑖 = �0 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 1 − πi

1 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 πi

where
E[yi] = πi

and
var[yi] =  πi(1 − πi).

Usually, one o f the categories is the outcome of interest, like  
death or disease. This category is usually coded as 1.
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We can use linear regression to model this outcome, 
but this  can present several problems as we will see.

Usingthe linearmodelapproach, we relate the
expected  value of yi to a predictor xi as

E[yi] = β0 + β1xi

Just looking at this relationship, we can see a potential 
problem.  What is it?

Modeling binary data
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Modeling binary data

Over small ranges of the predictor or when the relationship  
between the predictor and the outcome is not strong, this 
may  not be troubling.
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However, if the association is strong, potential problems are  
more evident.

●● ● ●●●●●● ●●●●●●●●●●● ●
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6
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8

1.
0

x

y2

We could put constraints on the βs that would prevent this  from 
happening, but this would be complicated and probably  not the best 
way to address this problem.

Modeling binary data
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 Consider a two-outcome probability space, where:
– p( O1 ) = p
– p( O2 ) = 1 – p = q

 Can express probability of O1 as:

notation rang
e

equivalents

standard probability p 0 0.5 1
odds p / q 0 1 + ∞

log odds (logit) log( p / q ) - ∞ 0 + ∞

Different ways of expressing probability
32



33

Log odds

 Numeric treatment of outcomes O1 and O2 is  
equivalent
– If neither outcome is favored over the other,  then log 

odds = 0.
– If one outcome is favored with log odds = x,  then 

other outcome is disfavored with log  odds = -x.
 Especially useful in domains where relative  

probabilities can be miniscule
– Example: multiple sequence alignment in  

computational biology
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From probability to log odds
(and back again)

logit function

logistic function

𝑧𝑧 = log
𝑝𝑝

1 − 𝑝𝑝
𝑝𝑝

1 − 𝑝𝑝
= 𝑒𝑒𝑧𝑧

𝑝𝑝 =
𝑒𝑒𝑧𝑧

1 + 𝑒𝑒𝑧𝑧
=

1
1 + 𝑒𝑒−𝑧𝑧
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Standard logistic function
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Logistic regression

 Scenario:
– A multidimensional feature space (features  

can be categorical or continuous).
– Outcome is discrete, not continuous.

 We’ll focus on case of two classes.
– It seems plausible that a linear decision  

boundary (hyperplane) will give good  
predictive accuracy.
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Using a logistic regression model

 Model consists of a vector β in d-dimensional feature  
space

 For a point x in feature space, project it onto β to convert  
it into a real number z in the range - ∞ to + ∞

z =α +β ⋅x =α + β1x1 + . . . + βd xd

 Map z to the range 0 to 1 using the logistic function

p =1/(1+ e− z )

 Overall, logistic regression maps a point x in d-
dimensional feature space to a value in the range 0 to 1
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Using a logistic regression model

 Can interpret prediction from a logistic regression  
model as:
– A probability of class membership
– A class assignment, by applying threshold to  

probability
threshold represents decision boundary in feature  
space
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Training a logistic regression model

 Need to optimize β so the model gives the best  
possible reproduction of training set labels
– Usually done by numerical approximation of  

maximum likelihood
– On really large datasets, may use stochastic  

gradient descent
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Logistic regression in one dimension
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Logistic regression in one dimension
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Logistic regression in one dimension

 Parameters control shape and location of sigmoid curve
– α controls location of midpoint
– β controls slope of rise
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Logistic regression in one dimension
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Logistic regression in one dimension
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Logistic regression in two dimensions

Subset of Fisher iris dataset
– Two classes
– First two columns (SL, SW) decision boundary
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Logistic regression in two dimensions

Interpreting the model vector of coefficients

-1.9024 -0.4047 ] From MATLAB: B = [ 13.0460

 α = B( 1 ), β = [ β1 β2 ] = B( 2 : 3)
 α, β define location and orientation  

of decision boundary
– - α is distance of decision  

boundary from origin
– decision boundary is  

perpendicular to β

β

 magnitude of β defines gradient  
of probabilities between 0 and 1
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Logistic regression in two dimensions
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Logistic regression

 Advantages:
– Makes no assumptions about distributions of classes in feature  

space
– Easily extended to multiple classes (multinomial regression)
– Natural probabilistic view of class predictions
– Quick to train
– Very fast at classifying unknown records
– Good accuracy for many simple data sets
– Resistant to overfitting
– Can interpret model coefficients as indicators of feature  

importance

 Disadvantages:
– Linear decision boundary
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k-Nearest Neighbour
Supervised Learning
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k-Nearest Neighbors
Given a query item:

Find k closest matches
in a labeled dataset ↓
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k-Nearest Neighbors
Given a query item:                     Return the most
Find k closest matches                Frequent label
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k-Nearest Neighbors
k = 3 votes for “cat”
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k-Nearest Neighbors
2 votes for cat,
1 each for Buffalo,                                           Cat wins…
Deer, Lion
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Nearest Neighbor Algorithm

• Learning Algorithm:
– Store training examples

• Prediction Algorithm:
– To classify a new example x by finding the training  

example (xi,yi) that is nearest to x
– Guess the class y = yi
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Instance based classifiers

Set of Stored Cases • Store the training samples

• Use training samples to  
predict the class label of  
unseen samples

Unseen Case

Atr1 ……... AtrN Class
A

B

B

C

A

C

B

Atr1 ……... AtrN
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Instance based classifiers

 Examples:
– Rote learner

memorize entire training data
perform classification only if attributes of test  
sample match one of the training samples exactly

– Nearest neighbor
use k “closest” samples (nearest neighbors) to  
perform classification
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Nearest neighbor classifiers

 Basic idea:
– If it walks like a duck, quacks like a duck, then  

it’s probably a duck

test  
sample

compute  
distance

training  
samples

choose k of the  
“nearest” samples
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Nearest neighbor classifiers
Unknown record Requires three inputs:

1. The set of stored  
samples

2. Distance metric to
compute distance
between samples

3. The value of k, the  
number of nearest  
neighbors to retrieve
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Nearest neighbor classifiers

To classify unknown record:
1. Compute distance to

Unknown record

other training records
2. Identify k nearest  

neighbors
3. Use class labels of  

nearest neighbors to  
determine the class  
label of unknown record  
(e.g., by taking majority
vote)
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Definition of nearest neighbor

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

k-nearest neighbors of a sample x are datapoints  
that have the k smallest distances to x
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K-‐Nearest Neighbor Methods

• To classify a new input vector x, examine the k-‐closest 
training data points to x  and assign the object to the most 
frequently occurring class

k=1

k=5
x

common values for k: 3, 5

Why?
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Example results for k-‐NN
M
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Training Error: 0.145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.

0.225  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test Error:  
Bayes Error: 0.210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .o. . . . . . . . . . . . . . . .

[Figures from Has8e and Tibshirani, Chapter 13]
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Nearest Neighbor

When to Consider
– Instance map to points in Rn

– Less than 20 attributes per instance
– Lots of training data

Advantages
– Training is very fast
– Learn complex target functions
– Do not lose information

Disadvantages
– Slow at query
– Easily fooled by irrelevant attributes
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Issues

• Distance measure
– Most common: Euclidean

• Choosing k
– Increasing k reduces variance, increases bias

• For high--dimensional space, problem that the nearest  
neighbor may not be very close at all!

• Memory--based technique. Must make a pass through
the data for each classification. This can be prohibitive
for large data sets.
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Nearest Neighbors
Training example in Euclidean space: x ∈Rd

Idea: The value of the target function for a new query is estimated from the  
known value(s) of the nearest training example(s)
Distance typically defined to be Euclidean:

𝑥𝑥(𝑎𝑎) − 𝑥𝑥(𝑏𝑏)
2 = �

𝑗𝑗=1

𝑑𝑑

(𝑥𝑥𝑗𝑗
(𝑎𝑎) − 𝑥𝑥𝑗𝑗

(𝑏𝑏))2

Algorithm:
1. Find example (x∗, t∗) (from the stored training set) closest to  

the test instance x. That is:

x∗ = argmin distance(x(i),x)
x(i )∈train. set

2. Output y = t∗

Note: we don’t really need to compute the square root. Why?
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Nearest Neighbors: Decision Boundaries

Zemel, Urtasun, Fidler (UofT)CSC 411: 05-NearestNeighbors

Nearest neighbor algorithm does not explicitly compute decision boundaries,  
but these can be inferred
Decision boundaries: Voronoi diagram visualization

show how input space divided into classes
each line segment is equidistant between two points of opposite classes
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Example: 2D decision boundary
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Example: 3D decision boundary



69 [Slide credit: O. Veksler]

Nearest Neighbor approaches 
can work with multi-modal data
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k-Nearest Neighbors

Zemel, Urtasun, Fidler (UofT)CSC 411: 05-NearestNeighbors

[Pic by Olga Veksler]

Nearest neighbors sensitive to mis-labeled data (“class noise”). Solution?  
Smooth by having k nearest neighbors vote
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k-Nearest Neighbors [Pic by Olga Veksler]

Algorithm (kNN):
1. Find k examples {x(i ), t(i )}closest to the test instance x
2. Classification output is majority class

𝑦𝑦 = argmax
𝑡𝑡(𝑧𝑧)

�
𝑟𝑟=1

𝑘𝑘

𝛿𝛿(𝑤𝑤 𝑧𝑧 , 𝑤𝑤(𝑟𝑟))



72

k-Nearest Neighbors

Zemel, Urtasun, Fidler (UofT)CSC 411: 05-NearestNeighbors

How do we choose k?

Larger k may lead to better performance
But if we set k too large we may end up looking at samples that are not  
neighbors (are far away from the query)
We can use cross-validation to find k

Rule of thumb is k < sqrt(n), where n is the number of training examples

[Slide credit: O. Veksler]
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k-Nearest Neighbors: Issues & Remedies

If some attributes (coordinates of x) have larger ranges, they 
are treated as  more important
► normalize scale

►Simple option: Linearly scale the range of each feature to be, e.g., in  
range [0,1]

►Linearly scale each dimension to have 0 mean and variance 1 (compute  
mean µ and variance σ2 for an attribute xj  and scale: (xj − m)/σ)

►be careful: sometimes scale matters

Zemel, Urtasun, Fidler (UofT)CSC 411: 05-NearestNeighbors
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k-Nearest Neighbors: Issues & Remedies
Irrelevant, correlated attributes add noise to distance measure

►eliminate some attributes
►or vary and possibly adapt weight of attributes

Non-metric attributes (symbols)
►Hamming distance

Zemel, Urtasun, Fidler (UofT)CSC 411: 05-NearestNeighbors
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k-Nearest Neighbors: Issues (Complexity) &
Remedies

Zemel, Urtasun, Fidler (UofT)CSC 411: 05-NearestNeighbors75 / 22

Expensive at test time: To find one nearest neighbor of a query point x, we  
must compute the distance to all N training examples. Complexity: O(kdN)  
for kNN

Use subset of dimensions
Pre-sort training examples into fast data structures (e.g., kd-trees)
Compute only an approximate distance (e.g., LSH)
Remove redundant data (e.g., condensing)

[Slide credit: David Claus]
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k-Nearest Neighbors: Issues (Complexity) &
Remedies

Zemel, Urtasun, Fidler (UofT)CSC 411: 05-NearestNeighbors76 / 22

Storage Requirements: Must store all training data
Remove redundant data (e.g., condensing)
Pre-sorting often increases the storage requirements

High Dimensional Data: “Curse of Dimensionality”
Required amount of training data increases exponentially with  

dimension
Computational cost also increases

[Slide credit: David Claus]
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k-Nearest Neighbors Remedies: Remove Redundancy

If all Voronoi neighbors have the same class, a sample is useless, remove it

[Slide credit: O. Veksler]

k-Nearest Neighbors Remedies: 
Remove Redundancy
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Example: Digit Classification
Example: Digit Classification
Decent performance when lots of data
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Fun Example: 
Where on Earth is this Photo From?
Problem: Where (e.g., which country or GPS location) was 

this picture  taken?

Zemel, Urtasun, Fidler (UofT)CSC 411: 05-NearestNeighbors79 / 22

[Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single
image. CVPR’08. Project page: h t t p : / / g r a p h i c s . c s . c m u . e d u / p r o j e c t s / i m 2 g p s / ]

http://graphics.cs.cmu.edu/projects/im2gps/
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Problem: Where (e.g., which country or GPS location) was this picture  
taken?

Get 6M images from Flickr with GPs info (dense sampling across world)
Represent each image with meaningful features
Do kNN!

Fun Example: 
Where on Earth is this Photo From?

Zemel, Urtasun, Fidler (UofT)CSC 411: 05-NearestNeighbors80 / 22

[Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single
image. CVPR’08. Project page: h t t p : / / g r a p h i c s . c s . c m u . e d u / p r o j e c t s / i m 2 g p s / ]

http://graphics.cs.cmu.edu/projects/im2gps/
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Problem: Where (eg, which country or GPS location) was this picture  
taken?

Get 6M images from Flickr with gps info (dense sampling across world)
Represent each image with meaningful features
Do kNN (large k better, they use k = 120)!

Zemel, Urtasun, Fidler (UofT)CSC 411: 05-NearestNeighbors81 / 22

Fun Example: 
Where on Earth is this Photo From?

[Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single
image. CVPR’08. Project page: h t t p : / / g r a p h i c s . c s . c m u . e d u / p r o j e c t s / i m 2 g p s / ]

http://graphics.cs.cmu.edu/projects/im2gps/
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Example: PEBLS

 PEBLS: Parallel Examplar-Based Learning  
System (Cost & Salzberg)
– Works with both continuous and nominal  

features
For nominal features, distance between two  
nominal values is computed using modified value  
difference metric (MVDM)

– Each sample is assigned a weight factor
– Number of nearest neighbor, k = 1
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Example: PEBLS
Distance between nominal attribute values:
d(Single,Married)
= | 2/4 – 0/4 | + | 2/4 – 4/4 | = 1  

d(Single,Divorced)
= | 2/4 – 1/2 | + | 2/4 – 1/2 | = 0  

d(Married,Divorced)
= | 0/4 – 1/2 | + | 4/4 – 1/2 | = 1  

d(Refund=Yes,Refund=No)
= | 0/3 – 3/7 | + | 3/3 – 4/7 | = 6/7

Tid Refund Marital  
Status

Taxable  
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No
5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

n n1 2

n1i − n2 i
1 2 ∑

i

d (V ,V ) =
Class

Refund

Yes No

Yes 0 3

No 3 4

Class
Marital Status

Single Married Divorced

Yes 2 0 1

No 2 4 1
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Example: PEBLS
Tid Refund Marital  

Status
Taxable  
Income Cheat

X Yes Single 125K No

Y No Married 100K No
10

∑
d

X Y
2d ( X i ,Yi )∆ ( X ,Y ) = w w

Distance between record X and record Y:

i=1

where:
Number of times X predicts correctly

= Number of times X is used for prediction
Xw

wX ≅ 1 if X makes accurate prediction most of the time

wX > 1 if X is not reliable for making predictions
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K-NN Summary

Zemel, Urtasun, Fidler (UofT)CSC 411: 05-NearestNeighbors

Naturally forms complex decision boundaries; adapts to data density  
If we have lots of samples, kNN typically works well
Problems:

Sensitive to class noise
Sensitive to scales of attributes
Distances are less meaningful in high dimensions
Scales linearly with number of examples
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K-NN Summary

Naturally forms complex decision boundaries; adapts to data density  
If we have lots of samples, kNN typically works well
Problems:

Sensitive to class noise
Sensitive to scales of attributes
Distances are less meaningful in high dimensions
Scales linearly with number of examples

Inductive Bias: What kind of decision boundaries do we expect to find?
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Decision boundaries in global vs. local 
models

linear regression

• global

15-nearest neighbor 1-nearest neighbor

• local
• stable
• can be inaccurate

• accurate
• unstable

What ultimately matters: GENERALIZATION
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KNN – summary

ML forNLP

Non-parametric: makes no assumptions about the probability  
distribution the examples come from
Does not assume data is linearly separable  
Derives decision rule directly from training data  
“Lazy learning”:

During learning little “work” is done by the algorithm: the training  
instances are simply stored in memory in some efficient manner.

During prediction the test instance is compared to the training  
instances, the neighborhood is calculated, and the majority label  
assigned

No information discarded: “exceptional” and low frequency training  
instances are available for prediction
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kNN Demo

http://vision.stanford.edu/teaching/cs231n-demos/knn/

http://vision.stanford.edu/teaching/cs231n-demos/knn/
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