
0

Welcome!
COMP1511 18s1

Programming Fundamentals

1COMP1511 18s1
— Lecture 21 —

Analysis, Sorting, Searching
Andrew Bennett

<andrew.bennett@unsw.edu.au>

2Admin

Don’t panic!
assignment 3 out now!

week 11’s tute/lab help you get started

week 11
lab solutions now out weekly test due friday

don’t forget about help sessions!
see course website for details

there will be lectures next week!
(week 13)

3Questions?
unanswered questions?

ask on Ed
edstem.org/courses/1950/

…

https://echo360.org.au/

note: you may need to go via Moodle

https://moodle.telt.unsw.edu.au

(let me know if you can/can’t access it!)

https://edstem.org/courses/1950/discussion/new
https://echo360.org.au/home
https://moodle.telt.unsw.edu.au/

4COMP1511 vs future COMP courses
COMP1511

gets you thinking like a programmer
solving problems by developing programs
expressing your ideas in the C language

5COMP1511 vs future COMP courses
future COMP courses

(e.g. COMP2521)

gets you thinking like a computer scientist
knowing fundamental techniques/structures

able to reason about applicability/effectiveness
able to analyse behaviour/correctness of programs

6COMP1511 vs future COMP courses
for now… just a taster

(you’ll have to take COMP2521 for more!)

7introducing: analysis
putting the science in computer science

for when “it works!” isn’t good enough

8what makes software good?

9what makes software good?
correctness?

10what makes software good?
correctness?

efficiency?

11what makes software good?
correctness?

efficiency?

clear, maintainable code?

12what makes software good?
correctness?

efficiency?

clear, maintainable code?

usability?

13

today: efficiency

14Efficiency
COMP1511 focuses on writing correct programs

but
effciency is also important

often need to consider:
execution time

memory use

a correct but too slow program can be useless

15Efficiency
efficiency often depends on the size of the data being processed

understanding this dependency lets us
predict program performance

on larger data

….

informal exploration in COMP1511 - much more in COMP2521 and COMP3121

16Analysis of Algorithms
how can we find out whether a program is efficient or not?

empirical approach - run the program
several times with different input sizes

and measure the time taken

theoretical approach - try to count the number of
`operations’’ performed by the algorithm

on input of size n

17Linear Search Unordered Array - Code
int linear_search(int array[], int length, int x) {

 for (int i = 0; i < length; i = i + 1) {

 if (array[i] == x) {

 return 1;

 }

 }

 return 0;

}

18Linear Search Unordered Array - Informal
Analysis

Operations:

start at first element
inspect each element in turn

stop when find X or reach end

If there are N elements to search:

best case check 1 element
worst case check N elements

if in list on average check N/2 elements
if not in list check N elements

19Linear Search Ordered Array - Code
int linear_ordered(int array[], int length, int x) {

 for (int i = 0; i < length; i = i + 1) {

 if (array[i] == x) {

 return 1;

 } else if (array[i] > x) {

 return 0;

 }

 }

 return 0;

}

20Linear Search Ordered Array - Informal Analysis
Operations:

start at first element
inspect each element in turn

stop when find X or find value X or reach end

If there are N elements to search:

best case check 1 element
worst case check N elements

if in list on average check N/2 elements
if not in list on average check N/2 elements

21Binary Search Ordered Array - Code
int binary_search(int array[], int length, int x) {

 int lower = 0;

 int upper = length - 1;

 while (lower <= upper) {

 int mid = (lower + upper)/ 2;

 if (array[mid] == x) {

 return 1;

 } else if (array[mid] > x) {

 upper = mid - 1;

 } else {

 lower = mid + 1;

 }

 }

 return 0;

}

22Binary Search Ordered Array - Informal Analysis
Operations:

start with entire array
at each step halve the range the element may be in

stop when find X or range is empty

If there are N elements to search

best case check 1 element
worst case check log2(N)+1 elements

if in list on average check ~log2(N) elements

23Binary Search Ordered Array - Informal Analysis
log2(N) grows very slowly:

log2(10) = 3.3
log2(1000) = ~10

log2(1000000) = ~20
log2(1000000000) = ~30

log2(1000000000000) = ~40

Physicists estimate atoms in universe: \[1ex]

Binary search all atoms in universe in 1 microsecond

24let’s look at:
sorting

25Sorting
sort: rearrange a sequence so it is in non-decreasing order

why?
sorted sequence can be searched efficiently
items with equal keys are located together

why not?
simple obvious algorithms too slow to sort large sequences

(better algorithms can sort very large sequences)

26Sorting Algorithms
there are many different sorting algorithms

we’ll look at one slow obvious algorithm:

bubblesort

and at one fast algorithm:

quicksort

(SortVis: https://sorting.alhinds.com)

https://sorting.alhinds.com/

27Bubblesort
go through the array, comparing pairs of elements

swap the elements if they’re in the wrong order
…

repeat until sorted

28Bubblesort
// our array of numbers

 3 1 4 9 5

// compare the first pair

[3] [1] 4 9 5

// they're in the wrong order, so swap

[1] [3] 4 9 5

// compare the second pair

 1 [3] [4] 9 5

// compare the third pair

 1 3 [4] [9] 5

// compare the fourth pair

 1 3 4 [9] [5]

// they're in the wrong order, so swap

 1 3 4 [5] [9]

29Bubblesort - Code
void bubblesort(int array[], int length) {

 int swapped = 1;

 while (swapped) {

 swapped = 0;

 for (int i = 1; i < length; i = i + 1) {

 if (array[i] < array[i - 1]) {

 int tmp = array[i];

 array[i] = array[i - 1];

 array[i - 1] = tmp;

 swapped = 1;

 }

 }

 }

}

30Quicksort
faster than bubblesort

divide and conquer
(make the problem smaller each time)

works by dividing the array into two smaller arrays
then sorting the two smaller arrays

…

it does this by choosing a pivot
then moving all of the smaller elements to its left and

all of the larger elements to its right

31Quicksort - Code
void quicksort(int array[], int length) {

 quicksort1(array, 0, length - 1);

}

void quicksort1(int array[], int lo, int hi) {

 if (lo >= hi) {

 return;

 }

 int p = partition(array, lo, hi);

 // sort lower part of array

 quicksort1(array, lo, p);

 // sort upper part of array

 quicksort1(array, p + 1, hi);

}

32Quicksort Partition - Code
int partition(int array[], int lo, int hi) {

 int i = lo, j = hi;

 int pivotValue = array[(lo + hi) / 2];

 while (1) {

 while (array[i] < pivotValue) {

 i = i + 1;

 }

 while (array[j] > pivotValue) {

 j = j - 1;

 }

 if (i >= j) {

 return j;

 }

 int temp = array[i];

 array[i] = array[j];

 array[j] = temp;

 i = i + 1;

 j = j - 1;

 }

 return j;

33Quicksort and Bubblesort Compared
If we instrument quicksort and bubble sort code, we see:

bubblesort is proportional to n^2
quicksort is proportional to n log n

if n is small, little difference
if n is large, huge difference

for large n, you need a good sorting algorithm like quicksort

