
COMP 1531
 Software Engineering Fundamentals

Course Introduction

Aarthi Natarajan

1

COMP 1521 17s2
Software Engineering Fundamentals

Our Team
LiC: Aarthi Natarajan

a.natarajan@unsw.edu.au

Web: http://webcms3.cse.unsw.edu.au/COMP1531/17s2/

Course Admin:
Deepanjan Chakrbarthy, Sajid Anower (GitHub)

Tutors & Lab Assistants:

Deepanjan Chakrbarthy, Sajid Anower, Jessica Theodosius, Matthew
Phillips, Matthew Perry, Hussein Debel, Isaac Carr, Bella

Mangunsong, Anna Azzam, Kongzhang Hao, Minjie Shen, Armin
Chitizadeh, George Mountakis, Xiaocong Chen

2

mailto:a.natarajan@unsw.edu.au
http://webcms3.cse.unsw.edu.au/COMP1521/17s2
http://webcms3.cse.unsw.edu.au/COMP1521/17s2

COMP 1531 students
 Students in this course have completed COMP 1511

 Everyone has learned fundamental C programming and are familiar
with variables, data types, loop structures, defining and using
functions and returning results

 COMP 1511

⁻ Gets you thinking like a programmer

⁻ Solving problems by developing programs and expressing your
solution in C

 COMP 1531 Course Goals

⁻ gets you thinking like a software engineer

⁻ teaches you how to deliver value to customers

⁻ achieve customer goals through solving problems by applying the
fundamental principles of software engineering

⁻ software engineering is NOT programming !!

⁻ expose you to Python/Flask/Jinja2 framework 3

Course Context

COMP1531

COMP1521

4

COMP 1531 students
 Students in this course have completed COMP 1511

 Everyone has learned fundamental C programming and are familiar
with variables, data types, loop structures, defining and using
functions and returning results

 COMP 1511

⁻ Gets you thinking like a programmer

⁻ Solving problems by developing programs and expressing your
solution in C

 COMP 1531 Course Goals

⁻ gets you thinking like a software engineer

⁻ teaches you how to deliver value to customers

⁻ achieve customer goals through solving problems by applying the
fundamental principles of software engineering

⁻ software engineering is NOT programming !!

⁻ expose you to Python/Flask/Jinja2 framework 5

COMP 1531 Major Themes
Understand the importance of Software Engineering and why

Software Engineering is not programming

 Explore the key phases of software engineering life-cycle

Analyse a problem and elicit user requirements

Design using sound design principles

 Effective coding and testing techniques

 Team collaboration and software configuration management

Understand and gain practical experience in Agile Software
Development

6

Text Book

 There is no textbook.

 Material has been drawn from:

⁻ Software Engineerings , by Ivan Marsic, Rutgers, The State
University of New Jersey (Available for free download from:
http://www.ece.rutgers.edu/~marsic/books/SE/book-
SE_marsic.pdf)

⁻ Agile Software Development: Principles, Patterns and Practice ,
by Robert C Martin, Pearson

⁻ Foundations of Software Engineering, by Ashfaque Ahmed and
Bhanu Prasad, CRC Press

 Each week, the relevant chapters from the above sources will be
highlighted

 Links to useful tutorials will be uploaded as necessary

7

http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf

System

 Most work done on Linux…

- Lab work done on the CSE machine labs

- Technology stack – Python, Flask, SQLite3 and SQLAlchemy
(optional)

- Group project can be done on own equipment, but must use
the above core technology stack

- Must use Python 3.5 onwards (Use virtual environment, more
instructions will be provided in the forth-coming lectures and
tutorial sessions)

- Use your own favourite text editor (e.g., vim)

 Collaboration and Versioning Tool - GitHub

- You must create a GitHub account before Sunday this week,
else you will not be able to do lab in week 02 !

 8

Classes

 Lectures…

- 3 hours/week, weeks 1 – 12, Tue (14:00 – 16:00), Wed (15:00-
16:00)

- All lectures will be recorded (Echo 360)

 Tutorials…

- 1 hour/week, weeks 2 – 13

- Tutorials are compulsory to attend

 Labs…

- 2 hours/week, weeks 2 – 13

- small practical programming exercises, done in pairs (“pair
programming”)

- group project iteration demos scheduled in some lab sessions

9

Assessments - Group Project
 One main group project that runs through the whole term

- Project specification will be released in Week 02

- You are required to form groups of 4 (no more than 4)

- Contributes to 25% of the final course mark

 Project is implemented using an Agile Software Development Model

- Working software to be delivered in iterations

- Project specification can change at the end of an iteration (as customer
changes mind…), so design well !!

- Iteration demos will be held during your lab session, late demos will not
be accepted

- First iteration deadline will be advised next week

- Marks will be awarded for each iteration demo, which will count towards
your overall group project mark

- Responsibilities to be assigned to each group member during each
iteration

- Final project demo held in week 13 10

Assessments
 Tutorials (2%)

 Practical lab sessions (13% of overall mark)

- Mostly done in pairs – “pair programming”, but occasional individual
exercises (e.g., git-hub hands-on exercise)

- Lab exercise for Week X must be done in the lab and demonstrated to
tutor during Week X lab

- Lab exercises will enable you to become familiar with key technology
stack for COMP 1531 (and later..)

- Cannot obtain marks by emailing solution to tutors

 Online Quizzes (5% towards final mark)

- Multiple-choice format

- Review of content covered in lectures

- Taken in your own time (via WebCMS3)

- Due before Sunday 11:59 at end of week

 Final Exam (55% towards final mark)

- 3 hour final exam, more details through the term

11

Course Mark
 Course Work Mark

⁻ Quiz Mark + Lab Mark + Group Project Mark - (out of 45)

 Exam Mark

- Mark from the 3 hour final exam (out of 55)

- ExamOK = Exam Mark >= 24/55

 Final Course Mark (out of 100)

- Course Work Mark + Exam Mark

 Final Grade

- UF, If !ExamOK

- FL, if Final Course Mark < 50/100

- PS, if 50/100 ≤ Final Course Mark < 65/100

- CR, if 65/100 ≤ Final Course Mark < 75/100

- DN, if 75/100 ≤ Final Course Mark < 85/100

- HD, if Final Course Mark ≥ 85/100 12

Supplementary Exam

 Students are eligible for a Supplementary Exam if and only if:

- they cannot attend the final exam due to illness or
misadventure

- their final mark is in the range 47 ≤ Final Course Mark <
50 (in this case, Final Course Mark is limited to 50)

- a supplementary exam will not be awarded for any other
reason.

13

Tasks this week…
 GitHub

⁻ Create a GitHub account (on education.github.com)

⁻ After you have created your GitHub account, please go to this
link: https://dry-savannah-14861.herokuapp.com/ to add
yourselves to COMP 1531's GitHub organisation.

⁻ Put in your username. Note that your username would typically
look something like 'username456'. If you put in your user email
instead, the app app will silently fail and you won't receive an
invitation to the GitHub organisation.

⁻ Then, go to https://github.com/orgs/cse1531S1/invitation and
accept the invitation.

⁻ If you encounter any problem while doing this, either post it in
the course forum (include your GitHub username and user
email) or email Sajid (s.anower@student.unsw.edu.au) with
your GitHub username and email.

14

https://github.com/orgs/cse1531S1/invitation

More tasks this week…

 GitHub

⁻ Make yourself familiar with GitHub tutorials and lab02 that you
will be performing “individually” in week 2

 Pair Programming

⁻ Start thinking about who your partner will be for “pair-
programming” exercises

 Group Project

⁻ Start planning your team of no more than 4!

 Python

⁻ And check out the links for Python tutorials. This is a software
engineering course, not a programming course !!

15

COMP 1531
 Software Engineering Fundamentals

Introduction to Software
Engineering

Aarthi Natarajan

16

What is software?

 A software is a program or sequence of instructions that tells the
computer what tasks it needs to perform and how to perform them

 Software can be distinguished into:

- application software such as a database, spreadsheet or word-
processing program, a web browser, a console game etc.

- system software that deals with operating the computer or
devices connected to the computer (e.g., operating system such as
Microsoft Windows, Mac OS, Unix or device drivers) or utility
software (e.g., anti-virus programs)

 Software is everywhere and the economies of ALL developed
nations are dependent on software

 A software product is often used to refer to a collective set of
entities that includes software program, documentation, data…

 Software Engineering, Ian Marsic, 2012

17

18

 Objective: A developer identifies a potential to make income (rental or
sale)

 Developer initiates a project for building a complex of apartments and
employs a team consisting of:

₋ an architect to design the complex,

₋ a civil project manager who estimates manpower, machinery and time
required to finish the construction and makes a project plan, recruits people &
machinery and oversees the project to ensure its completion as per the design
and project plan.

₋ Building needs to comply to standards such as fire-alarms, exits, earthquake
resistance etc.

Civil Engineering Project

 Fundamentals of Software Engineering, Ashfaque Ahemed, 2016

19

 Objective: A business owner identifies the need for a software product because
there is a market for the product or required for the enterprise itself

 A project is instituted for completion of the software product and a team is
initiated consisting of:

₋ Business analysts to outline the list of features of product

₋ A software project manager who makes a project plan, estimates time, people (cost)
to deliver the proposed product)

₋ Software designers to design the product

₋ Software developers to implement the project.

₋ Software product tested and shipped.

₋ Software product needs to comply with security, performance, reliability (non-
functional requirements)

Software Development Project

 Fundamentals of Software Engineering, Ashfaque Ahemed, 2016

20

IEEE’s definition of Software Engineering:

“ The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of

software, and the study of these approaches; that is, the
application of engineering to software. “

What is Software Engineering

What is Software Engineering?

 “Software Engineering” is a discipline that enables customers
achieve business goals through designing and developing
software-based systems to solve their business problems e.g.,
develop a patient-record software in a doctor’s surgery, a
software to manage inventory

A software engineer starts with a problem definition and
applies tools of the trade to obtain a problem solution.
However…

 Software engineering requires great emphasis on methodology
or the method for managing the development process in
addition to great skills with tools and techniques.

 Software Engineering, Ivan Marsic, 2012

21

Software Engineering is not Programming

 Software engineering is often confused for programming

 Software engineering is about:

- Understanding of the business problem definition

- Creative formulation of ideas to solve the problem based on this
understanding and designing the “blueprint” or architecture of the
solution

 Programming is the craft of implementing the given “blueprint”

 A software engineer’s focus is on understanding the interaction
between the system-to-be and its users and the environment, and
designing the software-to-be based on this understanding

 A programmer’s focus is on the program code and ensuring that the
code faithfully implements the design

 Software Engineering, Ivan Marsic, 2012

22

 Software engineer is willing to learn the problem domain (a
problem cannot be solved without understanding it first). In
particular, this task requires the ability to:
− quickly learn new and diverse disciplines and business

processes
− communicate with domain experts, extract an abstract

model of the problem from a stream of information
provided in discipline-specific jargon, and formulate a
solution that makes sense in the context of customer’s
business

− design a software system that will realize the proposed
solution and gracefully evolve with the evolving business
needs for many years in the future

23

Fundamental Law of Software Engineering

 Software Engineering, Ivan Marsic, 2012

Figure 1: The Role of Software Engineer

Customer

Programmer

A bridge from customer needs to programming implementation

First law of software engineering
Software engineer is willing to learn the problem domain
(problem cannot be solved without understanding it first)

24
 Software Engineering, Ivan Marsic, 2012

Role of a software engineer (1)

Role of a software engineer (2)

 Software engineering delivers value to the customer

 Software Engineering, Ivan Marsic, 2012 Figure 1: Role of Software Engineering

25

Why is software engineering difficult(1) ?

1. Software Development is Complex

₋ Complex complicated

₋ Complex = composed of many simple parts that are

related to one another

₋ Complicated = not well understood, or explained

26

Complexity Example:
Scheduling Fence Construction Tasks

Setting posts
[3 time units]

Cutting wood
[2 time units]

Painting
[5 time units for uncut wood;

4 time units otherwise]

Nailing
[2 time units for unpainted;

3 time units otherwise]

Setting posts Nailing, Painting

Cutting Nailing

…shortest possible completion time = ?

27

[“simple” problem, but hard to solve without a pen and paper]

 Software Engineering, Ivan Marsic, 2012

2. Software Engineering requires imagination
e.g., ATM Machine – understanding the money-machine
problem

Bank’s

remote

datacenter

Bank

customer

ATM machine

1
2

34
5

67
8

90

1
2

34
5

67
8

90

1
2

34
5

67
8

90
Communication link

28
 Software Engineering, Ivan Marsic, 2012

Why is software engineering difficult(2) ?

How ATM Machine Might Work

Window clerk

Bookkeeper

Safe keeper

Datacenter

liaison

Dispenser

Safe

Cash

Transaction

record

Phone

Speakerphone

Bank’s

remote

datacenter

Domain Model

How may I
help you?

Customer

Domain model

created with help

of domain expert

29
 Software Engineering, Ivan Marsic, 2012

Cartoon Strip: How ATM Machine Works

B

Verify

this

account

B

Verify

this

account

C Verify

account

XYZ

XYZ valid.

Balance:

$100

C Verify

account

XYZ

XYZ valid.

Balance:

$100

D

Account

valid.

Balance:

$100

D

Account

valid.

Balance:

$100

G Record

$60 less

G Record

$60 less

A Enter

your PIN

Typing in

PIN number

…

A Enter

your PIN

Typing in

PIN number

…

E How may

I help

you?

Withdraw

$60

E How may

I help

you?

Withdraw

$60

F Release

$60

Dispense

$60

F Release

$60

Dispense

$60

H

Please take

your cash

Dispensing!
H

Please take

your cash

Dispensing!

30
 Software Engineering, Ivan Marsic, 2012

Why is software engineering difficult (3) ?

 As a software engineer:

- You need to understand the software domain (that is what you
are building)

- You need to understand the problem domain (because that is
what you are building a solution for)

- Besides, software is a formal domain with well-defined inputs
and goal, but real world is informal with ill-defined inputs and
goal states

- Challenge is to find a set of good abstractions that is
representative of the problem domain

- But, we live in a changing world…so good abstractions wear out,
break and get dispersed

 Software Engineering, Ivan Marsic, 2012

31

Software Engineering Life-Cycle

 We described software engineering as a complex, organised process
with a great emphasis on methodology. This organised process can
be broken into the following phases:

- Analysis and Specification

- Design

- Implementation

- Testing

- Release & Maintenance

 Each of the above phases can be accompanied by an artifact or
deliverable to be achieved at the completion of this phase

 The life-cycle usually comprises peripheral activities such as
feasibility studies, software maintenance, software configuration
management etc.

 Software Engineering, Ivan Marsic, 2012
32

Software Engineering Life-Cycle
1. Analysis and Specification:

- A process of knowledge-discovery about the “system-to-be” and
list of features, where software engineers need to:

- understand the problem definition (delimit its scope, elaborate the
system’s services (behavioural characteristics)

- abstract the problem to define a domain model (structural characteristics)

- Comprises both functional (inputs and outputs) and non-
functional requirements (performance, security, quality,
maintainability, extensibility)

- Popular techniques include use-case modelling, user-stories…

2. Design:

- A problem-solving activity that involves a “Creative process of
searching how to implement all of the customer’s
requirements” and generating software engineering blue-prints

 Software Engineering, Ivan Marsic, 2012

33

34

Software Engineering Blueprints
 As part of design process, essential to communicate your ideas

 When describing a process, people often tend to use abbreviations

and symbols

 Miller (1957) believes, people use higher levels of abstraction to

remember things: chunking

 Symbols can be easier chunked into patterns, represented into new

symbols

 Using symbols and hierarchical abstractions makes it easier for people

to think about complex systems

 Specifying software problems and solutions is like cartoon strip

writing, unfortunately, most of us are not artists, so software

engineers tend use something less exciting: UML symbols (class

diagram, component diagram, deployment diagram – different

symbols for different views)

 Software Engineering, Ivan Marsic, 2012

Cartoon Strip: How ATM Machine Works

B

Verify

this

account

B

Verify

this

account

C Verify

account

XYZ

XYZ valid.

Balance:

$100

C Verify

account

XYZ

XYZ valid.

Balance:

$100

D

Account

valid.

Balance:

$100

D

Account

valid.

Balance:

$100

G Record

$60 less

G Record

$60 less

A Enter

your PIN

Typing in

PIN number

…

A Enter

your PIN

Typing in

PIN number

…

E How may

I help

you?

Withdraw

$60

E How may

I help

you?

Withdraw

$60

F Release

$60

Dispense

$60

F Release

$60

Dispense

$60

H

Please take

your cash

Dispensing!
H

Please take

your cash

Dispensing!

35

Software Engineering Life-Cycle
₋ In generating these “blue-prints”, “cartoon strip writing” is fun,

represents problem & solutions in a more comprehensible manner,
but not formal enough

 Software Engineering, Ivan Marsic, 2012

Software Engineering Life-Cycle
3. Implementation:

- The process of encoding the design in a programming language
to deliver a software product

4. Testing:

- A process of verification that our system works correctly and
realises the goals

- Testing process encompasses unit tests (individual components
are tested), integration tests (the whole system is testing), user
acceptance tests (the system achieves the customer
requirements)

5. Operation & Maintenance:

- Running the system; Fixing defects, adding new funtionality

 Software Engineering, Ivan Marsic, 2012

36

Software Engineering Life-Cycle
 However, software development is unlike any other product

development in these aspects:

⁻ software is intangible and hard to visualize.

⁻ software is probably the most complex artifact—a large software
product consists of so many bits and pieces as well as their
relationships

⁻ software is probably the most flexible artifact—it can be easily
and radically modified at any stage of the development process,
so it can quickly respond to changes in customer requirements
Hence, a linear order of understanding the problem, designing a
solution, implementing and deploying the solution, does not
produce best results.

 It is easier to understand a complex problem by implementing and
evaluating pilot solutions.

 Software Engineering, Ivan Marsic, 2012 37

Incremental and Iterative Methods
 These insights led to adopting incremental and iterative

development methods, which are characterized by:

1. Break the big problem down into smaller pieces (increments)
and prioritize them.

2. In each iteration progress through the development in more
depth.

3. Seek the customer feedback and change course based on
improved understanding.

 An incremental and iterative process

⁻ seeks to get to a working instance as soon as possible.

⁻ progressively deepen the understanding or “visualization” of the
target product, by both advancing and retracting to earlier
activities to rediscover more of its features.

 Software Engineering, Ivan Marsic, 2012
38

COMP 1531
 Software Engineering Fundamentals

Week 01: Wednesday

Software Development Methods

Aarthi Natarajan

39

40

Software Development Methodologies
 Method = work strategy

- The Feynman Problem-Solving Algorithm: (i) Write down the problem (ii)
think very hard, and (iii) write down the answer.

 A software development method lays out a prescriptive process by mandating a
sequence of development tasks

 Elaborate processes with rigid, plan-driven, documentation heavy methodologies

• Waterfall: Unidirectional, finish this step before moving to the next

 Iterative & Incremental processes which develop increments of functionality and
repeat in a feedback loop

• Rational Unified Process [Jacobson et al., 1999]

• Agile methods (e.g., SCRUM, XP):

- Methods that are more aggressive in terms of short iterations

- Heavy customer involvement, user feedback essential; feedback loops on
several levels of granularity; customer is continuously asked to prioritize
the remaining work items and provide feedback about the delivered
increments of software.

 Software Engineering, Ivan Marsic, 2012

41

Waterfall Model (1970’s)
 Traditional, linear, sequential life cycle model also known as plan-driven development model

with detailed planning

– Detailed planning – problem is identified, documented and designed

– Implementation tasks identified, scoped and scheduled

– Development cycle followed by testing cycle

 Simple to understand and manage due to project visibility i.e. better control over all the
processes in the project because of clear visibility in all the phases

 Suitable for simple, risk-free projects with stable product statement, clear, well-known
requirements with no ambiguities, technical requirements clear and resources ample or
mission-critical applications (e.g., NASA)

 Software Engineering, Ivan Marsic, 2012

42

Waterfall Model Variation
A waterfall model variation that implements a quality gate system

• A process model that ensures that quality is maintained throughout the life-cycle

• A completion criteria check is done that does a quality assurance check to see if all
the necessary artifacts are generated for that phase and the artifacts meet the
quality standards

 Software Engineering Fundamentals, Ahmed, 2016

43

Waterfall Model Drawbacks
• No working software is produced until late into the software life-cycle

• Rigid and not very flexible

– Does not support fine-tuning or refinement of customer
requirements through the cycle

– Good ideas need to be identified upfront

– As typically all requirements are frozen at the end of the
requirements phase, once the application is implemented and in the
“testing” phase, it is difficult to retract and change something that
was not “well-thought out” in the concept phase or design phase

– A great idea in the release cycle is a threat

• Heavy documentation (typically model based artifacts, UML)

• Not suitable for projects where requirements are at a moderate risk of
changing

• Typically incurs a large management overhead

 Software Engineering Fundamentals, Ahmed, 2016

44

Rational Unified Process (RUP)
 An iterative software development process developed by Ivar

Jacobson, Grady Booch and James Rumbaugh which has a series of
four phases:

– Inception – scope the project, identify major players, what
resources are required, architecture and risks, estimate costs

– Elaboration – understand problem domain, analysis, evaluate in
detail required architecture and resources

– Construction – design, build and test software

– Transition – release software to production

 RUP is serial in the large and iterative in the small

– The four phases occur in a serial manner over time
(hmm…sounds like sequential), however…

– Work in an iterative manner on a day-to-day basis (some
modelling, some implementation, some testing, some
management…)

45

Rational Unified Process (RUP)
 All work in RUP organised into disciplines (previously workflows) :

– Development disciplines

• Business Modelling: understanding domain, develop a high-level
requirements model (use-case model)

• Requirements: Identify, model and document vision and
requirements (use-case model, , domain model (class or data
diagram), a business process model (a data flow diagram, activity
diagram)

• Analysis & Design: Engineer the blue-print

• Implementation: Encode the design

• Test: Testing throughout the project

• Deployment: Product releases, software delivery

– Support disciplines

• Configuration and Change Management, Project Management,
Environment

 UP is not inherently documentation centric.

46

Rational Unified Process (RUP)
 An iterative software development process developed by Ivar Jacobson,

 2003-2005 Scott W. Ambler

47

Enterprise Unified Process (EUP)
 An iterative software development process developed by Ivar Jacobson,

 2003-2005 Scott W. Ambler

1 Standish Group Report: There’s Less Development Chaos Today, by David Rubinstein SD Times
March 1, 2007, 2 “Agile Has Crossed the Chasm,” Dr. Dobb’s Journal, July 2, 2007. 3QSMA and
Cutter Consortium ROI
case study on BMC Software, 2008. 4 Gartner, Inc. 2005
3 Why agile - Rally software development corp

Why Do We Need Agile?

• 93% increased productivity

• 88% increased quality

• 83% improved stakeholder satisfaction

• 49% reduced costs

• 66% three-year, risk-adjusted return on investment

1 “Agile Methodologies: Survey Results,” by Shine Technologies, 2003; 2 Forrester

Research, 2004;

Why Do We Need Agile?

50

Agile Manifesto (Agile Alliance, 2001)
We are uncovering better ways of developing software by doing it and

helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

12 principles of Agile Software
• Our highest priority is to satisfy the customer

through early and continuous delivery of

valuable software.

• Welcome changing requirements, even late

in development. Agile processes harness

change for the customer's competitive

advantage.

• Deliver working software frequently, from

a couple of weeks to a couple of months, with

a preference to the shorter timescale.

• Business people and developers must

work together daily throughout the project.

• Build projects around motivated

individuals. Give them the environment and

support they need, and trust them to get the

job done.

• The most efficient and effective method

of conveying information to and within a

development team is face-to-face

conversation.

• Working software is the primary measure of

progress.

• Agile processes promote sustainable

development.

The sponsors, developers, and users should be

able

to maintain a constant pace indefinitely.

• Continuous attention to technical excellence

and good design enhances agility.

• Simplicity--the art of maximizing the amount

of work not done--is essential.

• The best architectures, requirements, and

designs

emerge from self-organizing teams.

• At regular intervals, the team reflects on how

to become more effective, then tunes and

adjusts its behavior accordingly.

Agile drawbacks
• Daily stand up meetings and close collaboration makes it difficult to adapt the process

to development outsourcing, clients and developers separated geographically, or

business clients who simply don't have the manpower, resources or interest to spare.

• emphasis on modularity, incremental development, and adaptability doesn't suit it

easily to clients who want contracts with firm estimates and timetables

• Its reliance on small self-organized teams makes it difficult to adapt to large software

projects with many stakeholders with different needs and neglects to take into account

the need for leadership while team members get used to working together.

• Further, lack of comprehensive documentation can make it difficult to maintain or add

to the software after members of the original team turn over, and can lead to modules

with inconsistent features and interfaces.

• Lastly, more than with Waterfall and RUP, Agile development typically depends on the

ability to recruit very experienced software engineers who know how to work

independently and interface effectively with business users.

Which methodology?
What does the customer want?

need software yesterday with the most advanced features at the lowest

possible cost !

No one methodology is the best fit

secret to successful software development is to understand all three processes in

depth and take the parts of each that are most suited to your particular

product and environment.

Stay agile in your approach through constant re-evaluation and revising the

development process

SaaS (Software as a Service) and Web 2.0 applications that require moderate

adaptability are likely to be suited to agile style

Mission-critical applications such as military, medical that require a high

degree of predictability are more suited to waterfall

AND AGILE UMBRELLA

Agile Software Development
Methodologies

55

Useful Links

• http://www.agilemodeling.com/essays/agileModelin
gRUP.htm

• http://www.ece.rutgers.edu/~marsic/books/SE/book
-SE_marsic.pdf (Chapter 1 - pages 1- 31)

• https://docs.python.org/3/tutorial/

• https://learnxinyminutes.com/docs/python3/

• https://www.tutorialspoint.com/python3/python_ba
sic_syntax.htm

55

http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf
http://www.ece.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf
https://docs.python.org/3/tutorial/
https://learnxinyminutes.com/docs/python3/
https://learnxinyminutes.com/docs/python3/
https://www.tutorialspoint.com/python3/python_basic_syntax.htm
https://www.tutorialspoint.com/python3/python_basic_syntax.htm

