3. Branching Algorithms

COMP6741: Parameterized and Exact Computation

Serge Gaspers12

1School of Computer Science and Engineering, UNSW Sydney, Australia
2Decision Sciences Group, Data61, CSIRO, Australia

Semester 2, 2017
1 Introduction

2 Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure Based Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely

3 Max 2-CSP

4 Further Reading
A vertex set \(S \subseteq V \) of a graph \(G = (V, E) \) is an independent set in \(G \) if there is no edge \(uv \in E \) with \(u, v \in S \).

An independent set is maximal if it is not a subset of any other independent set.

Examples:
Enumeration problem: Enumerate all maximal independent sets

ENUM-MIS

Input: graph G
Output: all maximal independent sets of G

Maximal independent sets: $\{a, d\}$, $\{b\}$, $\{c\}$
Enumeration problem: Enumerate all maximal independent sets

Enum-MIS

Input: graph G
Output: all maximal independent sets of G

Maximal independent sets: $\{a, d\}, \{b\}, \{c\}$

Note: Let v be a vertex of a graph G. Every maximal independent set contains a vertex from $N_G[v]$.
Branching Algorithm for \textsc{Enum-MIS}

Algorithm \textit{enum-mis}(G, I)

\textbf{Input} : A graph $G = (V, E)$, an independent set I of G.

\textbf{Output}: All maximal independent sets of G that are supersets of I.

1. $G' \leftarrow G \setminus N_G[I]$
2. \textbf{if} $V(G') = \emptyset$ \textbf{then}
 \hspace{1em} \text{Output } I$
 \hspace{1em} // G' has no vertex
3. \textbf{else}
4. \hspace{1em} Select $v \in V(G')$ such that $d_{G'}(v) = \delta(G')$ // v has min degree in G'
5. \hspace{1em} Run \textit{enum-mis}(G, I \cup \{u\}) for each $u \in N_{G'}[v]$
Let us upper bound by $L(n) = 2^{\alpha n}$ the number of leaves in any search tree of `enum-mis` for an instance with $|V(G')| \leq n$.

We minimize α (or 2^α) subject to constraints obtained from the branching:

$$L(n) \geq (d + 1) \cdot L(n - (d + 1))$$

for each integer $d \geq 0$.

$$\iff 2^{\alpha n} \geq d' \cdot 2^{\alpha \cdot (n - d')}$$

for each integer $d' \geq 1$.

$$\iff 1 \geq d' \cdot 2^{\alpha \cdot (-d')}$$

for each integer $d' \geq 1$.

For fixed d', the smallest value for 2^α satisfying the constraint is $d'^{1/d'}$. The function $f(x) = x^{1/x}$ has its maximum value for $x = e$ and for integer x the maximum value of $f(x)$ is when $x = 3$.

Therefore, the minimum value for 2^α for which all constraints hold is $3^{1/3}$. We can thus set $L(n) = 3^{n/3}$.
Since the height of the search trees is $\leq |V(G')|$, we obtain:

Theorem 1

Algorithm `enum-mis` has running time $O^*(\frac{3^n}{3^{\frac{n}{3}}}) \subseteq O(1.4423^n)$, where $n = |V|$.

Corollary 2

A graph on n vertices has $O(\frac{3^n}{3^{\frac{n}{3}}})$ maximal independent sets.
Theorem 3

There is an infinite family of graphs with $\Omega(3^{n/3})$ maximal independent sets.
Branching Algorithm

- **Selection**: Select a local configuration of the problem instance
- **Recursion**: Recursively solve subinstances
- **Combination**: Compute an optimal solution of the instance based on the optimal solutions of the subinstances

- **Simplification rule**: 1 recursive call
- **Branching rule**: ≥ 2 recursive calls
Outline

1 Introduction

2 Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure Based Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely

3 Max 2-CSP

4 Further Reading
Maximum Independent Set

Input: graph \(G \)
Output: A largest independent set of \(G \).
Algorithm $\text{mis}(G)$

Input : A graph $G = (V, E)$.

Output: The size of a maximum i.s. of G.

1. if $\Delta(G) \leq 2$ then // G has max degree ≤ 2
 2. return the size of a maximum i.s. of G in polynomial time

3. else if $\exists v \in V : d(v) = 1$ then // v has degree 1
 4. return $1 + \text{mis}(G - N[v])$

5. else if G is not connected then
 6. Let G_1 be a connected component of G
 7. return $\text{mis}(G_1) + \text{mis}(G - V(G_1))$

8. else
 9. Select $v \in V$ s.t. $d(v) = \Delta(G)$ // v has max degree
 10. return $\max(1 + \text{mis}(G - N[v]), \text{mis}(G - v))$
Lemma 4

If $v \in V$ has degree 1, then G has a maximum independent set I with $v \in I$.

Proof.

Let J be a maximum independent set of G.
If $v \in J$ we are done because we can take $I = J$.
If $v \not\in J$, then $u \in J$, where u is the neighbor of v, otherwise J would not be maximum.
Set $I = (J \setminus \{u\}) \cup \{v\}$. We have that I is an independent set, and, since $|I| = |J|$, I is a maximum independent set containing v. □
Outline

1 Introduction

2 Maximum Independent Set
 • Simple Analysis
 • Search Trees and Branching Numbers
 • Measure Based Analysis
 • Optimizing the measure
 • Exponential Time Subroutines
 • Structures that arise rarely

3 Max 2-CSP

4 Further Reading
Lemma 5 (Simple Analysis Lemma)

Let

- A be a branching algorithm
- $\alpha > 0$, $c \geq 0$ be constants

such that on input I, A calls itself recursively on instances I_1, \ldots, I_k, but, besides the recursive calls, uses time $O(|I|^c)$, such that

$$\forall i : 1 \leq i \leq k \quad |I_i| \leq |I| - 1, \text{ and } 2^{\alpha \cdot |I_1|} + \ldots + 2^{\alpha \cdot |I_k|} \leq 2^{\alpha \cdot |I|}. \quad (1)$$

Then A solves any instance I in time $O(|I|^{c+1}) \cdot 2^{\alpha \cdot |I|}$. \quad (2)
Proof.

By induction on $|I|$.

W.l.o.g., suppose the hypotheses’ O statements hide a constant factor $d \geq 0$, and for the base case assume that the algorithm returns the solution to an empty instance in time $d \leq d \cdot |I|^c + 12^\alpha \cdot |I|$.

Suppose the lemma holds for all instances of size at most $|I| - 1 \geq 0$, then the running time of algorithm A on instance I is

$$T_A(I) \leq d \cdot |I|^c + \sum_{i=1}^{k} T_A(I_i)$$

(by definition)

$$\leq d \cdot |I|^c + \sum d \cdot |I_i|^{c+1}2^{\alpha \cdot |I_i|}$$

(by the inductive hypothesis)

$$\leq d \cdot |I|^c + d \cdot (|I| - 1)^{c+1} \sum 2^{\alpha \cdot |I_i|}$$

(by (1))

$$\leq d \cdot |I|^c + d \cdot (|I| - 1)^{c+1}2^{\alpha \cdot |I|}$$

(by (2))

$$\leq d \cdot |I|^{c+1}2^{\alpha \cdot |I|}.$$

The final inequality uses that $\alpha \cdot |I| > 0$ and holds for any $c \geq 0$. \qed
Simple Analysis for mis

- At each node of the search tree: $O(n^2)$
- G disconnected:
 1. If $\alpha \cdot s < 1$, then $s < 1/\alpha$, and the algorithm solves G_1 in constant time (provided that $\alpha > 0$). We can view this rule as a simplification rule, getting rid of G_1 and making one recursive call on $G - V(G_1)$.
 2. If $\alpha \cdot (n - s) < 1$: similar as (1).
 3. Otherwise, always satisfied since the function 2^x has slope ≥ 1 when $x \geq 1$.
- Branch on vertex of degree $d \geq 3$
 1. $(\forall d : 3 \leq d \leq n - 1)$ $2^{\alpha \cdot (n-1)} + 2^{\alpha \cdot (n-1-d)} \leq 2^{\alpha \cdot n}$.

Dividing all these terms by $2^{\alpha \cdot n}$, the constraints become

$$2^{-\alpha} + 2^{\alpha \cdot (-1-d)} \leq 1.$$
Compute optimum α

The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α subject to the constraints (the constraint for $d = 3$ is sufficient as all other constraints are weaker).
The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α subject to the constraints (the constraint for $d = 3$ is sufficient as all other constraints are weaker).

Alternatively, set $x := 2^\alpha$, compute the unique positive real root of each of the characteristic polynomials

$$c_d(x) := x^{-1} + x^{-1-d} - 1,$$

and take the maximum of these roots [Kullmann '99].

<table>
<thead>
<tr>
<th>d</th>
<th>x</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.3803</td>
<td>0.4650</td>
</tr>
<tr>
<td>4</td>
<td>1.3248</td>
<td>0.4057</td>
</tr>
<tr>
<td>5</td>
<td>1.2852</td>
<td>0.3620</td>
</tr>
<tr>
<td>6</td>
<td>1.2555</td>
<td>0.3282</td>
</tr>
<tr>
<td>7</td>
<td>1.2321</td>
<td>0.3011</td>
</tr>
</tbody>
</table>
use the Simple Analysis Lemma with $c = 2$ and $\alpha = 0.464959$

- running time of Algorithm mis upper bounded by

 $O(n^3) \cdot 2^{0.464959 \cdot n} = O(2^{0.4650 \cdot n})$ or $O(1.3803^n)$
Lower bound

\[T(n) = T(n - 5) + T(n - 3) \]

- for this graph, \(P_n^2 \), the worst case running time is \(1.1938 \ldots ^n \cdot \text{poly}(n) \)
- Run time of algo \textit{mis} is \(\Omega(1.1938^n) \)
Worst-case running time — a mystery

What is the worst-case running time of Algorithm mis?

- lower bound $\Omega(1.1938^n)$
- upper bound $O(1.3803^n)$
Outline

1. Introduction

2. **Maximum Independent Set**
 - Simple Analysis
 - **Search Trees and Branching Numbers**
 - Measure Based Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely

3. Max 2-CSP

4. Further Reading
Search Trees

Denote \(\mu(I) := \alpha \cdot |I| \).
Search Trees

Denote $\mu(I) := \alpha \cdot |I|$.

\[
\begin{align*}
\mu(I) & \quad \mu(I_1) & \mu(I_2) & \quad \vdots & \quad \mu(I_k) \\
\ldots & \quad \ldots & \quad \ldots & \quad \ldots & \quad \ldots
\end{align*}
\]

Example: execution of mis on a P_n^2

\[
\begin{align*}
n & \quad n \quad n - 3 \quad n - 5 \\
n - 3 & \quad \quad n - 6 \quad n - 8 \quad n - 8 \quad n - 10
\end{align*}
\]
Consider a constraint

$$2^{\mu(I)-a_1} + \ldots + 2^{\mu(I)-a_k} \leq 2^{\mu(I)}.$$

Its branching number is

$$2^{-a_1} + \ldots + 2^{-a_k},$$

and is denoted by

$$(a_1, \ldots, a_k).$$

Clearly, any constraint with branching number at most 1 is satisfied.
Dominance For any a_i, b_i such that $a_i \geq b_i$ for all i, $1 \leq i \leq k$,

$$(a_1, \ldots, a_k) \leq (b_1, \ldots, b_k),$$

as $2^{-a_1} + \ldots + 2^{-a_k} \leq 2^{-b_1} + \ldots + 2^{-b_k}$.

In particular, for any $a, b > 0$,

either $(a, a) \leq (a, b)$ or $(b, b) \leq (a, b)$.

Balance If $0 < a \leq b$, then for any ε such that $0 \leq \varepsilon \leq a$,

$$(a, b) \leq (a - \varepsilon, b + \varepsilon)$$

by convexity of 2^x.
Outline

1 Introduction

2 Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure Based Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely

3 Max 2-CSP

4 Further Reading
Goal
- capture more structural changes when branching into subinstances

How?
- potential-function method, a.k.a., Measure & Conquer

Example: Algorithm \textbf{mis}
- advantage when degrees of vertices decrease
Instead of using the number of vertices, n, to track the progress of \textbf{mis}, let us use a measure μ of G.

Definition 6

A measure μ for a problem P is a function from the set of all instances for P to the set of non negative reals.

Let us use the following measure for the analysis of \textbf{mis} on graphs of maximum degree at most 5:

$$\mu(G) = \sum_{i=0}^{5} \omega_i n_i,$$

where $n_i := |\{v \in V : d(v) = i\}|$.
Lemma 7 (Measure Analysis Lemma)

Let

- A be a branching algorithm
- $c \geq 0$ be a constant, and
- $\mu(\cdot), \eta(\cdot)$ be two measures for the instances of A, such that on input I, A calls itself recursively on instances I_1, \ldots, I_k, but, besides the recursive calls, uses time $O(\eta(I)^c)$, such that

\[
\forall i \in [k] \quad \eta(I_i) \leq \eta(I) - 1, \quad \text{and} \quad \sum_{i=1}^{k} 2^{\mu(I_i)} \leq 2^{\mu(I)}. \tag{6}
\]

Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^\mu(I)$.
Analysis of mis for degree at most 5

For $\mu(G) = \sum_{i=0}^{5} \omega_i n_i$ to be a valid measure, we constrain that

$$w_d \geq 0$$

for each $d \in \{0, \ldots, 5\}$

We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the degree-1 simplification rule and the branching rule):

$$-\omega_d + \omega_{d-1} \leq 0$$

for each $d \in \{1, \ldots, 5\}$
Analysis of mis for degree at most 5

For $\mu(G) = \sum_{i=0}^{5} \omega_i n_i$ to be a valid measure, we constrain that

$$w_d \geq 0 \quad \text{for each } d \in \{0, \ldots, 5\}$$

We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the degree-1 simplification rule and the branching rule):

$$-\omega_d + \omega_{d-1} \leq 0 \quad \text{for each } d \in \{1, \ldots, 5\}$$

Lines 1–2 is a halting rule and we merely need that it takes polynomial time so that we can apply Lemma 7.

if $\Delta(G) \leq 2$ then // G has max degree ≤ 2
 return the size of a maximum i.s. of G in polynomial time
Lines 3–4 of \texttt{mis} need to satisfy (7).

```latex
\textbf{else if } \exists v \in V : d(v) = 1 \textbf{ then} \quad // v \text{ has degree 1}
\quad \text{return } 1 + \text{mis}(G - N[v])
```

The simplification rule removes \(v\) and its neighbor \(u\).

We get a constraint for each possible degree of \(u\):

\[
2^\mu(G) - \omega_1 - \omega_d \leq 2^\mu(G) \quad \text{for each } d \in \{1, \ldots, 5\}
\]
\[
\Leftrightarrow \quad 2^{\omega_1 + \omega_d} \leq 2^0 \quad \text{for each } d \in \{1, \ldots, 5\}
\]
\[
\Leftrightarrow \quad -\omega_1 - \omega_d \leq 0 \quad \text{for each } d \in \{1, \ldots, 5\}
\]

These constraints are always satisfied since \(\omega_d \geq 0\) for each \(d \in \{0, \ldots, 5\}\).

\textbf{Note:} the degrees of \(u\)'s other neighbors (if any) decrease, but this degree change does not increase the measure.
Analysis of mis for degree at most 5 (III)

For lines 5–7 of mis we consider two cases.

\begin{verbatim}
else if \(G \) is not connected then
 \begin{enumerate}
 \item Let \(G_1 \) be a connected component of \(G \)
 \item return mis(\(G_1 \)) + mis(\(G - V(G_1) \))
 \end{enumerate}
\end{verbatim}

If \(\mu(G_1) < 1 \) (or \(\mu(G - V(G_1)) < 1 \), which is handled similarly), then we view this rule as a simplification rule, which takes polynomial time to compute mis(\(G_1 \)), and then makes a recursive call mis(\(G - V(G_1) \)). To ensure that instances with measure \(< 1\) can be solved in polynomial time, we constrain that

\[w_d > 0 \quad \text{for each } d \in \{3, 4, 5\} \]

and this will be implied by other constraints.

Otherwise, \(\mu(G_1) \geq 1 \) and \(\mu(G - V(G_1)) \geq 1 \), and we need to satisfy (7). Since \(\mu(G) = \mu(G_1) + \mu(G - V(G_1)) \), the constraints

\[2\mu(G_1) + 2\mu(G - V(G_1)) \leq 2\mu(G) \]

are always satisfied since the slope of the function \(2^x \) is at least 1 when \(x \geq 1 \). (i.e., we get no new constraints on \(\omega_1, \ldots, \omega_5 \).)
Lines 8–10 of \texttt{mis} need to satisfy (7).

\begin{verbatim}
else
 Select \(v \in V \) s.t. \(d(v) = \Delta(G) \) // \(v \) has max degree
 return \(\max (1 + \text{mis}(G - N[v]), \text{mis}(G - v)) \)
\end{verbatim}

We know that in \(G - N[v] \), some vertex of \(N^2[v] \) has its degree decreased (unless \(G \) has at most 6 vertices, which can be solved in constant time). Define

\[
(\forall d : 2 \leq d \leq 5) \quad h_d := \min_{2 \leq i \leq d} \{ w_i - w_{i-1} \}
\]

We obtain the following constraints:

\[
2^{\mu(G) - w_d - \sum_{i=2}^{d} p_i \cdot (w_i - w_{i-1})} + 2^{\mu(G) - w_d - \sum_{i=2}^{d} p_i \cdot w_i - h_d} \leq 2^{\mu(G)}
\]

\[
\Leftrightarrow \quad 2^{-w_d - \sum_{i=2}^{d} p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^{d} p_i \cdot w_i - h_d} \leq 1
\]

for all \(d, 3 \leq d \leq 5 \) (degree of \(v \)), and all \(p_i, 2 \leq i \leq d \), such that \(\sum_{i=2}^{d} p_i = d \) (number of neighbors of degree \(i \)).
Applying the lemma

Our constraints

\[w_d \geq 0 \]
\[-\omega_d + \omega_{d-1} \leq 0 \]
\[2^{-w_d - \sum_{i=2}^{d} p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^{d} p_i \cdot w_i - h_d} \leq 1 \]

are satisfied by the following values:
Applying the lemma

Our constraints

\begin{align*}
wd & \geq 0 \\
-\omega d + \omega_{d-1} & \leq 0 \\
2^{-wd} - \sum_{i=2}^{d} p_i \cdot (w_i - w_{i-1}) + 2^{-wd} \sum_{i=2}^{d} p_i \cdot w_i - h_d & \leq 1
\end{align*}

are satisfied by the following values:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(w_i)</th>
<th>(h_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>0.10</td>
</tr>
<tr>
<td>4</td>
<td>0.38</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>0.40</td>
<td>0.02</td>
</tr>
</tbody>
</table>

These values for \(w_i \) satisfy all the constraints and \(\mu(G) \leq 2n/5 \) for any graph of max degree \(\leq 5 \).

Taking \(c = 2 \) and \(\eta(G) = n \), the Measure Analysis Lemma shows that \texttt{mis} has run time \(O(n^3)2^{2n/5} = O(1.3196^n) \) on graphs of max degree \(\leq 5 \).
Outline

1 Introduction

2 Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure Based Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely

3 Max 2-CSP

4 Further Reading
Compute optimal weights

- By convex programming [Gaspers, Sorkin 2009]

All constraints are already convex, except conditions for h_d

\[
(\forall d : 2 \leq d \leq 5) \quad h_d := \min_{2 \leq i \leq d} \{w_i - w_{i-1}\}
\]

\[
\Downarrow
\]

\[
(\forall i, d : 2 \leq i \leq d \leq 5) \quad h_d \leq w_i - w_{i-1}.
\]

Use existing convex programming solvers to find optimum weights.
Convex program in AMPL

param maxd integer = 5;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg <= i
var Wmax; # maximum weight of W[d]
minimize Obj: Wmax; # minimize the maximum weight

subject to MaxWeight {d in DEGREES}:
 Wmax >= W[d];
subject to gNotation {d in DEGREES : 2 <= d}:
 g[d] <= W[d]-W[d-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
 h[d] <= W[i]-W[i-1];
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 : p2+p3+p4+p5=5}:
Optimal weights

<table>
<thead>
<tr>
<th>i</th>
<th>w_i</th>
<th>h_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.206018</td>
<td>0.206018</td>
</tr>
<tr>
<td>3</td>
<td>0.324109</td>
<td>0.118091</td>
</tr>
<tr>
<td>4</td>
<td>0.356007</td>
<td>0.031898</td>
</tr>
<tr>
<td>5</td>
<td>0.358044</td>
<td>0.002037</td>
</tr>
</tbody>
</table>

- use the Measure Analysis Lemma with $\mu(G) = \sum_{i=1}^{5} w_i n_i \leq 0.358044 \cdot n$, $c = 2$, and $\eta(G) = n$
- **mis** has running time $O(n^3)2^{0.358044 \cdot n} = O(1.2817^n)$
Outline

1. Introduction

2. Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure Based Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely

3. Max 2-CSP

4. Further Reading
Lemma 8 (Combine Analysis Lemma)

Let

- A be a branching algorithm and B be an algorithm,
- $c \geq 0$ be a constant, and
- $\mu(\cdot), \mu'(\cdot), \eta(\cdot)$ be three measures for the instances of A and B,

such that $\mu'(I) \leq \mu(I)$ for all instances I, and on input I, A either solves I by invoking B with running time $O(\eta(I)^{c+1}) \cdot 2^{\mu'(I)}$, or calls itself recursively on instances I_1, \ldots, I_k, but, besides the recursive calls, uses time $O(\eta(I)^c)$, such that

$$
(\forall i) \quad \eta(I_i) \leq \eta(I) - 1, \quad \text{and} \quad 2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \leq 2^{\mu(I)}.
$$

Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$.

Algorithm \textit{mis} on general graphs

- use the Combine Analysis Lemma with $A = B = \text{mis}$, $c = 2$, $\mu(G) = 0.35805n$, $\mu'(G) = \sum_{i=1}^{5} w_i n_i$, and $\eta(G) = n$
- for every instance G, $\mu'(G) \leq \mu(G)$ because $\forall i, w_i \leq 0.35805$
- for each $d \geq 6$,

\[(0.35805,(d + 1) \cdot 0.35805) \leq 1\]

- Thus, Algorithm \textit{mis} has running time $O(1.2817^n)$ for graphs of arbitrary degrees
Outline

1 Introduction

2 Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure Based Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely

3 Max 2-CSP

4 Further Reading
Rare Configurations

- Branching on a local configuration C does not influence overall running time if C is selected only a constant number of times on the path from the root to a leaf of any search tree corresponding to the execution of the algorithm.
- Can be proved formally by using measure

$$\mu'(I) := \begin{cases}
\mu(I) + c & \text{if } C \text{ may be selected in the current subtree} \\
\mu(I) & \text{otherwise.}
\end{cases}$$
Avoid branching on regular instances in \texttt{mis}

\begin{verbatim}
else
 Select \(v \in V \) such that

 (1) \(v \) has maximum degree, and

 (2) among all vertices satisfying (1), \(v \) has a neighbor of
 minimum degree

 return \(\max (1 + \texttt{mis}(G - N[v]), \texttt{mis}(G - v)) \)
\end{verbatim}

New measure:

\[\mu'(G') = \mu(G') + \sum_{d=3}^{5} [G \text{ has a } d\text{-regular subgraph}] \cdot C_d \]

where \(C_d, 3 \leq d \leq 5 \), are constants.

The Iverson bracket \([F] = \begin{cases} 1 \text{ if } F \text{ true} \\ 0 \text{ otherwise} \end{cases}\)
Resulting Branching numbers

For each $d, 3 \leq d \leq 5$ and all $p_i, 2 \leq i \leq d$ such that $\sum_{i=2}^{d} p_i = d$ and $p_d \neq d$,

$$\left(w_d + \sum_{i=2}^{d} p_i \cdot (w_i - w_{i-1}), w_d + \sum_{i=2}^{d} p_i \cdot w_i + h_d \right).$$

All these branching numbers are at most 1 with the optimal set of weights on the next slide.
Thus, the modified Algorithm **mis** has running time $O(2^{0.3480 \cdot n}) = O(1.2728^n)$.

Current best algorithm for MIS: $O(1.1996^n)$ [Xiao, Nagamochi '13]
1 Introduction

2 Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure Based Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely

3 Max 2-CSP

4 Further Reading
Max 2-CSP generalizes Maximum Independent Set

Max 2-CSP

Input: A graph $G = (V, E)$ and a set S of score functions containing
- a score function $s_e : \{0, 1\}^2 \to \mathbb{N}_0$ for each edge $e \in E$,
- a score function $s_v : \{0, 1\} \to \mathbb{N}_0$ for each vertex $v \in V$, and
- a score “function” $s_\emptyset : \{0, 1\}^0 \to \mathbb{N}_0$ (which takes no arguments and is just a constant convenient for bookkeeping).

Output: The maximum score $s(\phi)$ of an assignment $\phi : V \to \{0, 1\}$:

$$s(\phi) := s_\emptyset + \sum_{v \in V} s_v(\phi(v)) + \sum_{uv \in E} s_{uv}(\phi(u), \phi(v)).$$
Outline

1 Introduction

2 Maximum Independent Set
 - Simple Analysis
 - Search Trees and Branching Numbers
 - Measure Based Analysis
 - Optimizing the measure
 - Exponential Time Subroutines
 - Structures that arise rarely

3 Max 2-CSP

4 Further Reading
Further Reading

- Chapter 2, *Branching* in

- Chapter 6, *Measure & Conquer* in

- Chapter 2, *Branching Algorithms* in