
3. Branching Algorithms

COMP6741: Parameterized and Exact Computation

Serge Gaspers12

1School of Computer Science and Engineering, UNSW Sydney, Asutralia
2Decision Sciences Group, Data61, CSIRO, Australia

Semester 2, 2017

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 1 / 51

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 2 / 51

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 3 / 51

Recall: Maximal Independent Sets

A vertex set S ⊆ V of a graph G = (V,E) is an independent set in G if there
is no edge uv ∈ E with u, v ∈ S.

An independent set is maximal if it is not a subset of any other independent
set.

Examples:

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 4 / 51

Enumeration problem: Enumerate all maximal independent
sets

Enum-MIS
Input: graph G
Output: all maximal independent sets of G

a b

c d

Maximal independent sets: {a, d}, {b}, {c}

Note: Let v be a vertex of a graph G. Every maximal independent set contains a
vertex from NG[v].

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 5 / 51

Enumeration problem: Enumerate all maximal independent
sets

Enum-MIS
Input: graph G
Output: all maximal independent sets of G

a b

c d

Maximal independent sets: {a, d}, {b}, {c}

Note: Let v be a vertex of a graph G. Every maximal independent set contains a
vertex from NG[v].

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 5 / 51

Branching Algorithm for Enum-MIS

Algorithm enum-mis(G, I)
Input : A graph G = (V,E), an independent set I of G.
Output: All maximal independent sets of G that are supersets of I.

1 G′ ← G−NG[I]
2 if V (G′) = ∅ then // G′ has no vertex

3 Output I

4 else
5 Select v ∈ V (G′) such that dG′(v) = δ(G′)// v has min degree in G′

6 Run enum-mis(G, I ∪ {u}) for each u ∈ NG′ [v]

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 6 / 51

Running Time Analysis

Let us upper bound by L(n) = 2αn the number of leaves in any search tree of
enum-mis for an instance with |V (G′)| ≤ n.

We minimize α (or 2α) subject to constraints obtained from the branching:

L(n) ≥ (d+ 1) · L(n− (d+ 1)) for each integer d ≥ 0.

⇔ 2αn ≥ d′ · 2α·(n−d
′) for each integer d′ ≥ 1.

⇔ 1 ≥ d′ · 2α·(−d
′) for each integer d′ ≥ 1.

For fixed d′, the smallest value for 2α satisfying the constraint is d′1/d
′
. The

function f(x) = x1/x has its maximum value for x = e and for integer x the
maximum value of f(x) is when x = 3.
Therefore, the minimum value for 2α for which all constraints hold is 31/3. We
can thus set L(n) = 3n/3.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 7 / 51

Running Time Analysis II

Since the height of the search trees is ≤ |V (G′)|, we obtain:

Theorem 1

Algorithm enum-mis has running time O∗(3n/3) ⊆ O(1.4423n), where n = |V |.

Corollary 2

A graph on n vertices has O(3n/3) maximal independent sets.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 8 / 51

Running Time Lower Bound

· · ·

Theorem 3

There is an infinite family of graphs with Ω(3n/3) maximal independent sets.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 9 / 51

Branching Algorithm

Branching Algorithm

Selection: Select a local configuration of the problem instance

Recursion: Recursively solve subinstances

Combination: Compute an optimal solution of the instance based on the
optimal solutions of the subinstances

Simplification rule: 1 recursive call

Branching rule: ≥ 2 recursive calls

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 10 / 51

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 11 / 51

Maximum Independent Set

Maximum Independent Set
Input: graph G
Output: A largest independent set of G.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 12 / 51

Branching Algorithm for Maximum Independent Set

Algorithm mis(G)
Input : A graph G = (V,E).
Output: The size of a maximum i.s. of G.

1 if ∆(G) ≤ 2 then // G has max degree ≤ 2
2 return the size of a maximum i.s. of G in polynomial time

3 else if ∃v ∈ V : d(v) = 1 then // v has degree 1
4 return 1 + mis(G−N [v])

5 else if G is not connected then
6 Let G1 be a connected component of G
7 return mis(G1) + mis(G− V (G1))

8 else
9 Select v ∈ V s.t. d(v) = ∆(G) // v has max degree

10 return max (1 + mis(G−N [v]),mis(G− v))

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 13 / 51

Correctness

Line 4:

Lemma 4
If v ∈ V has degree 1, then G has a maximum independent set I with v ∈ I.

Proof.
Let J be a maximum independent set of G.
If v ∈ J we are done because we can take I = J .
If v /∈ J , then u ∈ J , where u is the neighbor of v, otherwise J would not be
maximum.
Set I = (J \ {u}) ∪ {v}. We have that I is an independent set, and, since
|I| = |J |, I is a maximum independent set containing v.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 14 / 51

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 15 / 51

Simple Analysis I

Lemma 5 (Simple Analysis Lemma)

Let

A be a branching algorithm

α > 0, c ≥ 0 be constants

such that on input I, A calls itself recursively on instances I1, . . . , Ik, but, besides
the recursive calls, uses time O(|I|c), such that

(∀i : 1 ≤ i ≤ k) |Ii| ≤ |I| − 1, and (1)

2α·|I1| + · · ·+ 2α·|Ik| ≤ 2α·|I|. (2)

Then A solves any instance I in time O(|I|c+1) · 2α·|I|.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 16 / 51

Simple Analysis II

Proof.

By induction on |I|.
W.l.o.g., suppose the hypotheses’ O statements hide a constant factor d ≥ 0, and
for the base case assume that the algorithm returns the solution to an empty
instance in time d ≤ d · |I|c+12α·|I|.
Suppose the lemma holds for all instances of size at most |I| − 1 ≥ 0, then the
running time of algorithm A on instance I is

TA(I) ≤ d · |I|c +

k∑
i=1

TA(Ii) (by definition)

≤ d · |I|c +
∑

d · |Ii|c+12α·|Ii| (by the inductive hypothesis)

≤ d · |I|c + d · (|I| − 1)c+1
∑

2α·|Ii| (by (1))

≤ d · |I|c + d · (|I| − 1)c+12α·|I| (by (2))

≤ d · |I|c+12α·|I|.

The final inequality uses that α · |I| > 0 and holds for any c ≥ 0.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 17 / 51

Simple Analysis for mis

At each node of the search tree: O(n2)

G disconnected:
(1) If α · s < 1, then s < 1/α, and the algorithm solves G1 in constant time
(provided that α > 0). We can view this rule as a simplification rule, getting
rid of G1 and making one recursive call on G− V (G1).
(2) If α · (n− s) < 1: similar as (1).
(3) Otherwise,

(∀s : 1/α ≤ s ≤ n− 1/α) 2α·s + 2α·(n−s) ≤ 2α·n. (3)

always satisfied since the function 2x has slope ≥ 1 when x ≥ 1.

Branch on vertex of degree d ≥ 3

(∀d : 3 ≤ d ≤ n− 1) 2α·(n−1) + 2α·(n−1−d) ≤ 2αn. (4)

Dividing all these terms by 2αn, the constraints become

2−α + 2α·(−1−d) ≤ 1. (5)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 18 / 51

Compute optimum α

The minimum α satisfying the constraints is obtained by solving a convex
mathematical program minimizing α subject to the constraints (the constraint for
d = 3 is sufficient as all other constraints are weaker).

Alternatively, set x := 2α, compute the unique positive real root of each of the
characteristic polynomials

cd(x) := x−1 + x−1−d − 1,

and take the maximum of these roots [Kullmann ’99].

d x α
3 1.3803 0.4650
4 1.3248 0.4057
5 1.2852 0.3620
6 1.2555 0.3282
7 1.2321 0.3011

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 19 / 51

Compute optimum α

The minimum α satisfying the constraints is obtained by solving a convex
mathematical program minimizing α subject to the constraints (the constraint for
d = 3 is sufficient as all other constraints are weaker).

Alternatively, set x := 2α, compute the unique positive real root of each of the
characteristic polynomials

cd(x) := x−1 + x−1−d − 1,

and take the maximum of these roots [Kullmann ’99].

d x α
3 1.3803 0.4650
4 1.3248 0.4057
5 1.2852 0.3620
6 1.2555 0.3282
7 1.2321 0.3011

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 19 / 51

Simple Analysis: Result

use the Simple Analysis Lemma with c = 2 and α = 0.464959

running time of Algorithm mis upper bounded by
O(n3) · 20.464959·n = O(20.4650·n) or O(1.3803n)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 20 / 51

Lower bound

v1 v2 v3 v4 v5 v6 vn−1 vn

T (n) = T (n− 5) + T (n− 3)

for this graph, P 2
n , the worst case running time is 1.1938 . . .n · poly(n)

Run time of algo mis is Ω(1.1938n)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 21 / 51

Worst-case running time — a mystery

Mystery

What is the worst-case running time of Algorithm mis?

lower bound Ω(1.1938n)

upper bound O(1.3803n)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 22 / 51

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 23 / 51

Search Trees

Denote µ(I) := α · |I|.

µ(I)

µ(I1)

.

µ(I2)

.

. . . µ(Ik)

.

Example: execution of mis on a P 2
n

n

n− 3

n− 6 n− 8

n− 5

n− 8 n− 10

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 24 / 51

Search Trees

Denote µ(I) := α · |I|.

µ(I)

µ(I1)

.

µ(I2)

.

. . . µ(Ik)

.

Example: execution of mis on a P 2
n

n

n− 3

n− 6 n− 8

n− 5

n− 8 n− 10

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 24 / 51

Branching number: Definition

Consider a constraint

2µ(I)−a1 + · · ·+ 2µ(I)−ak ≤ 2µ(I).

Its branching number is

2−a1 + · · ·+ 2−ak ,

and is denoted by

(a1, . . . , ak) .

Clearly, any constraint with branching number at most 1 is satisfied.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 25 / 51

Branching numbers: Properties

Dominance For any ai, bi such that ai ≥ bi for all i, 1 ≤ i ≤ k,

(a1, . . . , ak) ≤ (b1, . . . , bk) ,

as 2−a1 + · · ·+ 2−ak ≤ 2−b1 + · · ·+ 2−bk .
In particular, for any a, b > 0,

either (a, a) ≤ (a, b) or (b, b) ≤ (a, b) .

Balance If 0 < a ≤ b, then for any ε such that 0 ≤ ε ≤ a,

(a, b) ≤ (a− ε, b+ ε)

by convexity of 2x.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 26 / 51

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 27 / 51

Measure based analysis

Goal

capture more structural changes when branching into subinstances

How?

potential-function method, a.k.a., Measure & Conquer

Example: Algorithm mis

advantage when degrees of vertices decrease

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 28 / 51

Measure

Instead of using the number of vertices, n, to track the progress of mis, let us use
a measure µ of G.

Definition 6
A measure µ for a problem P is a function from the set of all instances for P to
the set of non negative reals.

Let us use the following measure for the analysis of mis on graphs of maximum
degree at most 5:

µ(G) =

5∑
i=0

ωini,

where ni := |{v ∈ V : d(v) = i}|.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 29 / 51

Measure Based Analysis

Lemma 7 (Measure Analysis Lemma)

Let

A be a branching algorithm

c ≥ 0 be a constant, and

µ(·), η(·) be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I1, . . . , Ik, but, besides
the recursive calls, uses time O(η(I)c), such that

(∀i) η(Ii) ≤ η(I)− 1, and (6)

2µ(I1) + . . .+ 2µ(Ik) ≤ 2µ(I). (7)

Then A solves any instance I in time O(η(I)c+1) · 2µ(I).

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 30 / 51

Analysis of mis for degree at most 5

For µ(G) =
∑5
i=0 ωini to be a valid measure, we constrain that

wd ≥ 0 for each d ∈ {0, . . . , 5}

We also constrain that reducing the degree of a vertex does not increase the
measure (useful for analysis of the degree-1 simplification rule and the branching
rule):

−ωd + ωd−1 ≤ 0 for each d ∈ {1, . . . , 5}

Lines 1–2 is a halting rule and we merely need that it takes polynomial time so
that we can apply Lemma 7.

if ∆(G) ≤ 2 then // G has max degree ≤ 2
return the size of a maximum i.s. of G in polynomial time

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 31 / 51

Analysis of mis for degree at most 5

For µ(G) =
∑5
i=0 ωini to be a valid measure, we constrain that

wd ≥ 0 for each d ∈ {0, . . . , 5}

We also constrain that reducing the degree of a vertex does not increase the
measure (useful for analysis of the degree-1 simplification rule and the branching
rule):

−ωd + ωd−1 ≤ 0 for each d ∈ {1, . . . , 5}

Lines 1–2 is a halting rule and we merely need that it takes polynomial time so
that we can apply Lemma 7.

if ∆(G) ≤ 2 then // G has max degree ≤ 2
return the size of a maximum i.s. of G in polynomial time

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 31 / 51

Analysis of mis for degree at most 5 (II)

Lines 3–4 of mis need to satisfy (7).

else if ∃v ∈ V : d(v) = 1 then // v has degree 1
return 1 + mis(G−N [v])

The simplification rule removes v and its neighbor u.
We get a constraint for each possible degree of u:

2µ(G)−ω1−ωd ≤ 2µ(G) for each d ∈ {1, . . . , 5}
⇔ 2−ω1−ωd ≤ 20 for each d ∈ {1, . . . , 5}
⇔ −ω1 − ωd ≤ 0 for each d ∈ {1, . . . , 5}

These constraints are always satisfied since ωd ≥ 0 for each d ∈ {0, . . . , 5}.
Note: the degrees of u’s other neighbors (if any) decrease, but this degree change
does not increase the measure.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 32 / 51

Analysis of mis for degree at most 5 (III)

For lines 5–7 of mis we consider two cases.
else if G is not connected then

Let G1 be a connected component of G
return mis(G1) + mis(G− V (G1))

If µ(G1) < 1 (or µ(G− V (G1)) < 1, which is handled similarly), then we view
this rule as a simplification rule, which takes polynomial time to compute
mis(G1), and then makes a recursive call mis(G− V (G1)). To ensure that
instances with measure < 1 can be solved in polynomial time, we constrain that

wd > 0 for each d ∈ {3, 4, 5}

and this will be implied by other constraints.
Otherwise, µ(G1) ≥ 1 and µ(G− V (G1)) ≥ 1, and we need to satisfy (7).
Since µ(G) = µ(G1) + µ(G− V (G1)), the constraints

2µ(G1) + 2µ(G−V (G1)) ≤ 2µ(G)

are always satisfied since the slope of the function 2x is at least 1 when x ≥ 1.
(I.e., we get no new constraints on ω1, . . . , ω5.)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 33 / 51

Analysis of mis for degree at most 5 (IV)

Lines 8–10 of mis need to satisfy (7).

else
Select v ∈ V s.t. d(v) = ∆(G) // v has max degree

return max (1 + mis(G−N [v]),mis(G− v))

We know that in G−N [v], some vertex of N2[v] has its degree decreased (unless
G has at most 6 vertices, which can be solved in constant time). Define

(∀d : 2 ≤ d ≤ 5) hd := min
2≤i≤d

{wi − wi−1}

We obtain the following constraints:

2µ(G)−wd−
∑d

i=2 pi·(wi−wi−1) + 2µ(G)−wd−
∑d

i=2 pi·wi−hd ≤ 2µ(G)

⇔ 2−wd−
∑d

i=2 pi·(wi−wi−1) + 2−wd−
∑d

i=2 pi·wi−hd ≤ 1

for all d, 3 ≤ d ≤ 5 (degree of v), and all pi, 2 ≤ i ≤ d, such that
∑d
i=2 pi = d

(number of neighbors of degree i).

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 34 / 51

Applying the lemma

Our constraints

wd ≥ 0

−ωd + ωd−1 ≤ 0

2−wd−
∑d

i=2 pi·(wi−wi−1) + 2−wd−
∑d

i=2 pi·wi−hd ≤ 1

are satisfied by the following values:

i wi hi
1 0 0
2 0.25 0.25
3 0.35 0.10
4 0.38 0.03
5 0.40 0.02

These values for wi satisfy all the constraints and µ(G) ≤ 2n/5 for any graph of
max degree ≤ 5.
Taking c = 2 and η(G) = n, the Measure Analysis Lemma shows that mis has run
time O(n3)22n/5 = O(1.3196n) on graphs of max degree ≤ 5.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 35 / 51

Applying the lemma

Our constraints

wd ≥ 0

−ωd + ωd−1 ≤ 0

2−wd−
∑d

i=2 pi·(wi−wi−1) + 2−wd−
∑d

i=2 pi·wi−hd ≤ 1

are satisfied by the following values:

i wi hi
1 0 0
2 0.25 0.25
3 0.35 0.10
4 0.38 0.03
5 0.40 0.02

These values for wi satisfy all the constraints and µ(G) ≤ 2n/5 for any graph of
max degree ≤ 5.
Taking c = 2 and η(G) = n, the Measure Analysis Lemma shows that mis has run
time O(n3)22n/5 = O(1.3196n) on graphs of max degree ≤ 5.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 35 / 51

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 36 / 51

Compute optimal weights

By convex programming [Gaspers, Sorkin 2009]

All constraints are already convex, except conditions for hd

(∀d : 2 ≤ d ≤ 5) hd := min
2≤i≤d

{wi − wi−1}

�

(∀i, d : 2 ≤ i ≤ d ≤ 5) hd ≤ wi − wi−1.

Use existing convex programming solvers to find optimum weights.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 37 / 51

Convex program in AMPL

param maxd integer = 5;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg <= i
var Wmax; # maximum weight of W[d]

minimize Obj: Wmax; # minimize the maximum weight

subject to MaxWeight {d in DEGREES}:
Wmax >= W[d];

subject to gNotation {d in DEGREES : 2 <= d}:
g[d] <= W[d]-W[d-1];

subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
h[d] <= W[i]-W[i-1];

subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
2^(-W[3] -p2*g[2] -p3*g[3]) + 2^(-W[3] -p2*W[2] -p3*W[3] -h[3]) <=1;

subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
2^(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])

+ 2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :

p2+p3+p4+p5=5}:
2^(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])

+ 2^(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 38 / 51

Optimal weights

i wi hi
1 0 0
2 0.206018 0.206018
3 0.324109 0.118091
4 0.356007 0.031898
5 0.358044 0.002037

use the Measure Analysis Lemma with µ(G) =
∑5
i=1 wini ≤ 0.358044 · n,

c = 2, and η(G) = n

mis has running time O(n3)20.358044·n = O(1.2817n)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 39 / 51

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 40 / 51

Exponential time subroutines

Lemma 8 (Combine Analysis Lemma)

Let

A be a branching algorithm and B be an algorithm,

c ≥ 0 be a constant, and

µ(·), µ′(·), η(·) be three measures for the instances of A and B,

such that µ′(I) ≤ µ(I) for all instances I, and on input I, A either solves I by
invoking B with running time O(η(I)c+1) · 2µ′(I), or calls itself recursively on
instances I1, . . . , Ik, but, besides the recursive calls, uses time O(η(I)c), such that

(∀i) η(Ii) ≤ η(I)− 1, and (8)

2µ(I1) + . . .+ 2µ(Ik) ≤ 2µ(I). (9)

Then A solves any instance I in time O(η(I)c+1) · 2µ(I).

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 41 / 51

Algorithm mis on general graphs

use the Combine Analysis Lemma with A = B = mis, c = 2,
µ(G) = 0.35805n, µ′(G) =

∑5
i=1 wini, and η(G) = n

for every instance G, µ′(G) ≤ µ(G) because ∀i, wi ≤ 0.35805

for each d ≥ 6,

(0.35805, (d+ 1) · 0.35805) ≤ 1

Thus, Algorithm mis has running time O(1.2817n) for graphs of arbitrary
degrees

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 42 / 51

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 43 / 51

Rare Configurations

Branching on a local configuration C does not influence overall running time
if C is selected only a constant number of times on the path from the root to
a leaf of any search tree corresponding to the execution of the algorithm

Can be proved formally by using measure

µ′(I) :=

{
µ(I) + c if C may be selected in the current subtree

µ(I) otherwise.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 44 / 51

Avoid branching on regular instances in mis

else
Select v ∈ V such that

(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of

minimum degree
return max (1 + mis(G−N [v]),mis(G− v))

New measure:

µ′(G) = µ(G) +

5∑
d=3

[G has a d-regular subgraph] · Cd

where Cd, 3 ≤ d ≤ 5, are constants.

The Iverson bracket [F] =

{
1 if F true

0 otherwise

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 45 / 51

Resulting Branching numbers

For each d, 3 ≤ d ≤ 5 and all pi, 2 ≤ i ≤ d such that
∑d
i=2 pi = d and pd 6= d,

(
wd +

d∑
i=2

pi · (wi − wi−1), wd +

d∑
i=2

pi · wi + hd

)
.

All these branching numbers are at most 1 with the optimal set of weights on the
next slide

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 46 / 51

Result

i wi hi
1 0 0
2 0.207137 0.207137
3 0.322203 0.115066
4 0.343587 0.021384
5 0.347974 0.004387

Thus, the modified Algorithm mis has running time O(20.3480·n) = O(1.2728n).

Current best algorithm for MIS: O(1.1996n) [Xiao, Nagamochi ’13]

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 47 / 51

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 48 / 51

Max 2-CSP generalizes Maximum Independent Set

Max 2-CSP
Input: A graph G = (V,E) and a set S of score functions containing

a score function se : {0, 1}2 → N0 for each edge e ∈ E,

a score function sv : {0, 1} → N0 for each vertex v ∈ V , and

a score “function” s∅ : {0, 1}0 → N0 (which takes no
arguments and is just a constant convenient for bookkeeping).

Output: The maximum score s(φ) of an assignment φ : V → {0, 1}:

s(φ) := s∅ +
∑
v∈V

sv(φ(v)) +
∑
uv∈E

suv(φ(u), φ(v)).

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 49 / 51

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 50 / 51

Further Reading

Chapter 2, Branching in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

Chapter 6, Measure & Conquer in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

Chapter 2, Branching Algorithms in
Serge Gaspers. Exponential Time Algorithms: Structures, Measures, and
Bounds. VDM Verlag Dr. Mueller, 2010.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2017 51 / 51

	Introduction
	Maximum Independent Set
	Simple Analysis
	Search Trees and Branching Numbers
	Measure Based Analysis
	Optimizing the measure
	Exponential Time Subroutines
	Structures that arise rarely

	Max 2-CSP
	Further Reading

