
COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

Lecture 1 – Introduction to Service Oriented Computing

COMP 9322
Software Service Design and
Engineering

2

� Thomas Erl, Service-Oriented Architecture: Concepts,
Technology, and Design, 2005, Prentice Hall.

� Thomas Erl, SOA: Principles of Service Design, 2008,
Prentice Hall.

� http://www.soa-manifesto.org/
� Peter F. Drucker, Post-Capitalist Society,1993

References

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

3

� Service Orientation
□ The roots, Services
□ Service Oriented Architecture
□ Service Design Principles
□ State of the Art: Web Services

� Challenges of Service Orientation
� SOA Manifesto as a Summary

Outline

4

� Service:
□ is the application of

specialized competences
(knowledge and skills),
through deeds,
processes, and
performances for the
benefit of another entity
or the entity itself.
LUSCH & VARGO, "The
Service-Dominant Logic
of Marketing". (Armonk,
NY: ME Sharpe. 2006).

Service in Business

Goods Services
Pure Goods
Food
Chemicals

Core Goods
Appliances
Automobiles

Core Services
Airlines
Hotels

Pure Services
Teaching

Medical advice

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

5

What does software industry produce?

6

� Structured to produce
goods

� Vertical Integration was the
mode of operation:
□ The whole supply chain was

owned by a single
company.

□ Ford owned and produced
everything in The Rouge

� Critical factors of
production was:
□ Land, labor and capital

Organization’s of Yesterday

The Ford River Rouge Complex:
2.4 km x 1.6 km
93 buildings, 1.5 km2 floor space,
100,000 workers

https://en.wikipedia.org/wiki/Ford_Riv
er_Rouge_Complex

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

7

� What is the most critical factor of production for a
Software Start-up?

Discussion

8

� The most critical factor of production is:
□ Knowledge – It is always specialized

� We need organizations to put specialized knowledge into production
� Today’s organizations need to be structured around new principles:

n Be able to change quickly
n Be able to specialize – concentrate on a single task
n Be able to work in closely coupled teams

n like football/tennis team instead of a baseball team.

n Be able to innovate systematically

� Pluralization of services
□ Knowledge organizations are necessarily decentralized

□ Command and control does not work

� Service orientation is IT`s response for these challenges
□ The software architecture follows organizational architecture

Organizations of Today

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

9

� Separation of concerns:
□ To solve a large problem decompose it into smaller related

pieces.
□ Each of these pieces addresses a concern or a specific part

of the problem.

� How SO achieves this separation?
□ It is like different companies producing specialized goods

and services as oppose to a large vertically integrated
company, like General Motors producing everything.

‘Service Orientation’

10

Service is an Abstraction

� Programming
abstractions:
□ Procedures
□ Modules
□ Objects
□ Components
□ Services

� Hide the details
� Decompose systems into

procedures, objects, or
services

Function

M
od

ul
e

Se
rv

ice

Procedure

Data
structure En
tit

y

O
bj

ec
t

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

11

� The common popular approach:
1. Identify the business tasks to be automated

(Keeping inventory of items)

2. Define the software requirements
(The system shall Or For the user to be able to …)

3. Build a corresponding solution logic
(Decompose into classes including attributes and methods …)

� The benefits of the approach:
□ Solutions can be built efficiently -they are specialized
□ The business analysis effort is straightforward – well defined
□ The project management is relatively easy
□ Can take advantage of the latest technology – independent

solutions

SDLC Before Service Orientation

12

Application

Application Centric

Application

Application

Service Schedule

Order Processing

Account Management

Limited Consumers
Limited Business Processes

Overlapped resources
Overlapped providers

Integration

Architecture

Functionality is duplicated
in each application –
generating a report

EAI ‘leverage’ application silos with
the drawback of data and function
redundancy.

bound to
EAI vendor

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

13

� Significant amount of redundant functionality
□ The effort to create this functionality is also redundant.

� Significant amount of maintenance and administration
effort

� Integration is a constant challenge
□ Applications not designed to accommodate interoperability

requirements.

� Result in complex Infrastructures
□ Different technology platforms require different architectural

requirements
□ Siloed applications lead to counter-federation
□ Evolution is a great challenge

The Problems

14

� Is a model in which automation logic is decomposed into
smaller, distinct units of logic called services.

� Collectively, services establish a larger piece of business
automation.

� Individually, services can
□ exist autonomously
□ evolve independently

� yet
□ conform to set of principles
□ maintain a degree of commonality and standardization

Service Oriented Architecture

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

15

Service Architecture
Service

Service

Service

Service

Service Schedule

Order processing

Account Management

Service abstracts the details of how -
Enables multiple providers and consumers
to participate together in shared business
activities.

Multiple Service Consumers
Multiple Business Processes

Multiple Discrete Resources
Multiple Service Providers

SO structures the business and its systems
as a set of capabilities that are offered
as Services

Shared

Services

Service Centric

16

Before and After SOA

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

17

Service Context

� Each service work in a
distinct context:
□ Size might vary
□ Might require coordinated

aggregation – service
composition

□ To work together they
should be related and
communicate with each
other

18

Service Interface Description

� At the minimum:
□ the name,
□ the data expected and
□ The data returned

� If Service A knows the
Service B’s description
Service A can
communicate with
Service B.

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

19

Services Communicate

� Messages are
independents units of
communication

� Once the message is sent
the service has no control
over the message

20

� Design Paradigm
□ bring together ideas on how to decompose and integrate

components.
□ a model to define how to solve a class of problems that

share a set of common characteristics.

� Expresses in terms of
□ Design Principles / Patterns
□ Components
□ Software Architecture

� Different design paradigms:
□ Object Orientation is the most frequently known
□ Structured Analysis and Design – Functional decomposition

Service orientation is a design paradigm

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

21

� Standardized Service Contract
� Service Abstraction
� Service Loose Coupling
� Service Reusability
� Service Autonomy
� Service Statelessness
� Service Discoverability
� Service Composability

Service Design Principles

22

Standardized Service Contracts

� Services express their purpose and capabilities via a
service contract.

� Contract design emphasize:
□ How services express functionality
□ How data types and models are defined

□ How policies are attached

� It is the most fundamental principle.
□ Contract standard determines a service’s public technical

interface.

Source: Thomas Erl

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

23

Service Abstraction
� “Service contracts only contain essential

information and information about
services is limited to what is published in
service contracts”

� Avoid the proliferation of
unnecessary service
information, meta-data.

� Hide as much of the
underlying details of a
service as possible.
□ Enables and preserves the

loosely coupled relationships
□ Plays a significant role in the

positioning and design of
service compositions

24

� Coupling:
□ Relationship between two

components
□ Dependency increase with

increased/tight coupling

� Loose coupling enables:
□ Independent design,

evolution

Service Loose Coupling

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

25

Service Reusability

� “Services contain and express agnostic logic and
can be positioned as reusable enterprise resources."

� Reusable services have the
following characteristics:
□ Defined by an agnostic

functional context
□ Logic is highly generic
□ Has a generic and extensible

contract
□ Can be accessed concurrently

26

Service Autonomy
� "Services exercise a high level of

control over their underlying runtime
execution environment."

� Autonomy:
□ the ability of a service

to carry out its logic
independently of
outside influences

� To achieve this, services
must be more isolated

� Primary benefits
□ Increased reliability
□ Behavioral predictability

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

27

Service Statelessness

� "Services minimize resource consumption
by deferring the management of state
information when necessary."

� Services incorporate
state management
deferral extensions
within a service design

� Goals:
□ Increase service

scalability
□ Support design of

agnostic logic and
improve service reuse

28

Discoverability

� "Services are supplemented with
communicative meta data by which they can
be effectively discovered and interpreted."

� Services need to be easily:
□ Identified
□ Understood

� Service design needs to
take the "communications
quality» of the service into
account

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

29

Composability

� "Services are effective composition
participants, regardless of the size and
complexity of the composition."

� In the figure we solve a single
problem

� Services need to be able to
participate in multiple
compositions to solve multiple
larger problems
□ Individual processing should be

highly tuned

□ Flexible service contracts should
allow different types of data
exchange requirements for similar
functions

30

� What is the most fundamental design principle?

Discussion

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

31

� Increasing Intrinsic Interoperability
� Increasing Federation
� Increasing Vendor Diversification Options
� Increasing Business and Technology Domain Alignment
� Increasing ROI
� Increasing Organizational Efficiency
� Reducing IT Burden

Benefits of Service-Orientation

32

Increased Intrinsic Interoperability

� Interoperability:
□ Is the ability to share

information

� SO establish a native
mechanism to share
information within services.

� Design principles foster
interoperability:
□ Contract standardization
□ Discoverability
□ Composability

Project Team C can compose a
new application using Invoice

and Timesheet

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

33

Increased Federation

� Federation:
□ resources and applications

maintaining individual
autonomy.

� Service Orientation:
□ Wide spread standardized and

composable services
□ Upfront standardization

attention

� Design principles
□ Standardized Service Contract,
□ Loose Coupling,
□ Service Abstraction

Three service
contracts - three

federated end points

34

Vendor Diversification Options

� Vendor diversification:
□ the ability of an organization to

pick and choose “best-of-breed”
vendor products and technology
innovations

� Requires that the technology
architecture not be tied or
locked into any one specific
vendor platform.

� Autonomy increase life span
and financial return of IT.

� Web services framework
supports this property.

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

35

Business and Technology Domain Alignment

� Services are identified
based on the business
entities and business
processes.

� Service are designed to
be interoperable.
As a consequence they are
capable of aligning to new
demands by means of new
compositions.

36

Return On Investment

� ROI
□ is a measure to

understand how cost
effective the solution is

� Reusability requires
investment
□ Designing the agnostic

solution using service
orientation principles
requires more upfront
effort

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

37

Organizational Efficiency

� Efficency:
□ How fast can we

deliver?
□ How much we need to

spend?

� We have agnostic
services
□ reusable assetes

reduce time and cost at
the same time.

� However we increase
upfront costs to built
services properly

38

Reduced IT Burden

� As reuse become the
norm
□ The overall size will

reduce considerably

� Together with it the
overhead for
managing multiple
environments will
reduce.

� Result:
□ Reduced operational

costs

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

39

� Increasing Intrinsic Interoperability
� Increasing Federation
� Increasing Vendor Diversification Options
� Increasing Business and Technology Domain Alignment
� Increasing ROI
� Increasing Organizational Efficiency
� Reducing IT Burden

What is the most important benefit from
the Technical View Point?

40

� SOA is agnostic to technology platforms.

□ Nevertheless, today’s SOA is associated with Web: Web Services

� First generation web service platform:
□ WSDL (Web Service Description Language)- XML based interface definition language, XSD (

XML Shema Definition Language) - Specifies how to formally describe elements in XML, SOAP
(Simple Object Access Platform) - Protocol specification for exchanging structured information,
UDDI (Universal Description, Discovery and Integration) - XML Based registry, BP (WS-I
Basic profile) - Interoperability guidance for core services

� Second generation web service platform: 2000 …
□ Extensions with quality of service related gaps. Message-level security, cross service

transactions, reliable messaging. Labeled as WS-* (such as WS-Policy)

� Light weight alternatives: REST – 2008 …
□ JSON instead of XML, OpenAPI 3.0, PP communication, Based on HTTP.

� Reactive Systems: 2015 - …
□ Event based architectures

State of SOA - Web Services

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

41

Web Services Architecture – 2nd Gen

� The service provider sends a WSDL file
to UDDI.

� The service requester contacts UDDI to
find out who is the provider and
contacts the service provider using the
SOAP protocol.

� The service provider validates the
service request and sends data using
the SOAP protocol.

� This data would be validated again by
the service requester using an XSD file.

42

� Increased design complexity
� The need for design standards
� The need to identify requirements in advance
� The need for a counter-agile development approach
� The need for a specific governance structure

Challenges of Service Orientation

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

43

� Emphasis on reuse
□ Need services with agnostic logic for different potential

customers.
→ Increased level of complexity for services and architectures

� Performance requirements increase
� Reliability issues at peak concurrent usage
� Single point failures – if a reused service fails all reusing

services fail
� Increased demands on service hosting
� Versioning issues result in redundant contracts

Increased Design Complexity

44

� The effective use of services requires standardisation
□ It is healhty for software organizations
□ However it is not a straightforward process

n Requires a cultural change
n It is a social problem – most of the time not well understood and

undervalued by IT organizations

� Standardization might also create a culture that resists
change if you need to change the standard

The Need for Design Standards

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

45

� It is highly beneficial to create a blueprint for all
planned services upfront.
□ Top down - waterfall like - delivery strategy.
□ High level upfront analysis effort is required.
□ Frequently the problems software solves are un-structured

n We don’t know the formulation before we have the solution

□ Using iterative development approaches might be expensive
as major changes can be costly

Requirements First

46

� Additional design considerations increases the cost and
time to build the service logic.

� Together with the need for upfront requirements effort
and the need for standardization the development
process becomes counter agile.

Counter-Agile Approach

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

47

� Application Centric development:
□ Development by a single project team
□ Members know the problem domain well
□ Members remains to evolve the application

� Service Centric development:
□ Agnostic logic does not belong to a single process
□ Domain knowledge is lost
□ Team members do not own the service for evolution
□ A new governance model is required to maintain services

The Need for A New Governance Structure

48

Discussion – How are they related?
� Challenges

1. Increased design
complexity

2. The need for design
standards

3. The need to identify
requirements in advance

4. The need for a counter-
agile development
approach

5. The need for a specific
governance structure

� Principles
1. Standardized Service

Contract
2. Service Abstraction
3. Service Loose Coupling
4. Service Reusability
5. Service Autonomy
6. Service Statelessness
7. Service Discoverability
8. Service Composability

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

49

� Service orientation is a paradigm that frames what you do.
Service-oriented architecture (SOA) is a type of architecture
that results from applying service orientation.

� We have been applying service orientation to help organizations
consistently deliver sustainable business value, with increased agility
and cost effectiveness, in line with changing business needs.

� Through our work we have come to prioritize:
□ Business value over technical strategy
□ Strategic goals over project-specific benefits

□ Intrinsic interoperability over custom integration
□ Shared services over specific-purpose implementations

□ Flexibility over optimization
□ Evolutionary refinement over pursuit of initial perfection

SOA Manifesto

50

� Respect the social and power structure of the organization.

� Recognize that SOA ultimately demands change on many levels.

� The scope of SOA adoption can vary. Keep efforts manageable
and within meaningful boundaries.

� Products and standards alone will neither give you SOA nor apply
the service orientation paradigm for you.

� SOA can be realized through a variety of technologies and standards.

� Establish a uniform set of enterprise standards and policies based
on industry, de facto, and community standards.

� Pursue uniformity on the outside while allowing diversity on the inside.

� Identify services through collaboration with business and
technology stakeholders.

� Maximize service usage by considering the current and
future scope of utilization.

� Verify that services satisfy business requirements and goals.

� Evolve services and their organization in response to real use.

� Separate the different aspects of a system that change at different rates.

� Reduce implicit dependencies and publish all external dependencies to increase robustness and reduce the impact of
change.

� At every level of abstraction, organize each service around a cohesive
and manageable unit of functionality.

We follow these principles:

COMP 9322 - Software Service Design and Engineering / UNSW

Fethi Rabhi & Onur Demirors

51

� Discuss in at most one page:
□ What is the mismatch between today`s organizations and

big software?
□ What is taking place of the big software?

� https://cacm.acm.org/magazines/2017/12/223060-
the-death-of-big-software/fulltext

Reading assignment

