COMP9334

Capacity Planning for Computer Systems | and Networks

Week 3: Queues with Poisson arrivals

Pre-lecture exercise: Where is Felix? (1)

- You have two boxes: Box 1 and Box 2, as well as a cat called Felix
- The two boxes are connected by a tunnel
- Felix likes to hide inside these boxes and travels between them using the tunnel.
- Felix is a very fast cat so the probability of finding him in the tunnel is zero
- You know Felix is in one of the boxes but you don't know which one

Pre-lecture exercise: Where is Felix?

- Notation:
- Prob[A] = probability that event A occurs
- $\operatorname{Prob}[A \mid B]=$ probability that event A occurs given event B
- You do know
- Felix is in one of the boxes at times 0 and 1
- Prob[Felix is in Box 1 at time 0] $=0.3$
- Prob[Felix will be in Box 2 at time 1| Felix is in Box 1 at time 0] $=0.4$
- Prob[Felix will be in Box 1 at time 1| Felix is in Box 2 at time 0] $=0.2$
- Calculate
- Prob[Felix is in Box 1 at time 1]
- Prob[Felix is in Box 2 at time 1]

Week 1:

- Modelling a computer system as a network of queues
- Example: Open queueing network consisting of two queues

Week 2:

- Operational analysis
- Measure \#completed jobs, busy time etc
- Operational quantities: utilisation, response time, throughput etc.
- Operational laws relate the operational quantities
- Bottleneck analysis

Little's Law

- Applicable to any "box" that contains some queues or servers
- Mean number of jobs in the "box" = Mean response time x Throughput
- We will use Little's Law in this lecture to derive the mean response time
- We first compute the mean number of jobs in the "box" and throughput

This week (1)

- Open, single server queues and
- How to find:
- Waiting time
- Response time
- Mean queue length etc.
- The technique to find waiting time etc. is called Queueing Theory

This week (2)

Departures

- Open, multi-server queue
- How to find:
- Waiting time
- Response time
- Mean queue length etc.

What will you be able to do with the results?

processing speed = $m p$

Which configuration has the best response time?

Be patient

- We will show how we can obtain the response time
- It takes a number of steps to obtain the answer
- It takes time to stand in a queue, it also takes time to derive results in queuing theory!

Single Server Queue: Terminology

Time spent waiting

$$
\xrightarrow{T}=\mathrm{W}+\mathrm{S}
$$

Response Time T

= Waiting time W + Service time S
Note: We use T for response time because this is the notation in many queueing theory books. For a similar reason, we will use
ρ for utilisation rather than U.

Single server system

- In order to determine the response time, you need to know
- The inter-arrival time probability distribution
- The service time probability distribution
- Possible distributions
- Deterministic
- Constant inter-arrival time
- Constant service time
- Exponential distribution
- We will focus on exponential distribution

Exponential inter-arrival with rate λ

We assume that successive arrivals are independent

Probability that inter-arrival time is between x and $x+\delta x$ $=\lambda \exp (-\lambda x) \delta x$

Poisson distribution (1)

- The following are equivalent
- The inter-arrival time is independent and exponentially distributed with parameter λ
- The number of arrivals in an interval T is a Poisson distribution with parameter λ
$\operatorname{Pr}[k$ arrivals in a time interval $T]=\frac{(\lambda T)^{k} \exp (-\lambda T)}{k!}$
- Mean inter-arrival time $=1 / \lambda$
- Mean number of arrivals in time interval $T=\lambda T$
- Mean arrival rate $=\lambda$

Poisson distribution (2)

- Poisson distribution arises from a large number of independent sources
- An example from Week 2:
- N customers, each with a probability of p per unit time to make a request.
- This creates a Poisson arrival with $\lambda=N p$
- Another interpretation of Poisson arrival:
- Consider a small time interval δ
- This means δ^{n} (for $n>=2$) is negligible
- Probability [no arrival in δ] $=1-\lambda \delta$
- Probability [1 arrival in δ] $=\lambda \delta$
- Probability [2 or more arrivals in δ] ≈ 0
- This interpretation can be derived from:
$\operatorname{Pr}[k$ arrivals in a time interval $T]=\frac{(\lambda T)^{k} \exp (-\lambda T)}{k!}-$

Service time distribution

- Service time = the amount of processing time a job requires from the server
- We assume that the service time distribution is exponential with parameter μ
- The probability that the service time is between t and $t+\delta t$ is:

$$
\mu \exp (-\mu t) \delta t
$$

- Here: $\mu=$ service rate $=1$ / mean service time
- Another interpretation of exponential service time:
- Consider a small time interval δ
- Probability [a job will finish its service in next δ seconds] $=\mu \delta$

Sample queueing problems

- Consider a call centre
- Calls are arriving according to Poisson distribution with rate λ
- The length of each call is exponentially distributed with parameter μ
- Mean length of a call is $1 / \mu$ (in, e.g. seconds)

Call centre:

- Queueing theory will be able to answer these questions:
- What is the mean waiting time for a call?
- What is the probability that a call is rejected?

Road map

- We will start by looking at a call centre with one operator and no holding slot
- This may sound unrealistic but we want to show how we can solve a typical queueing network problem
- After that we go into queues that are more complicated

Call centre with 1 operator and no holding slots

- Let us see how we can solve the queuing problem for a very simple call centre with 1 operator and no holding slots
- What happens to a call that arrives when the operator is busy?
-
- What happens to a call that arrives when the operator is idle?
-

- We are interested to find the probability that an arriving call is rejected.

```
Arrivals Call centre:
1 operator. No holding slot.
```


Solution (1)

- There are two possibilities for the operator:
- Busy or
- Idle
- Let
- State $0=$ Operator is idle (i.e. \#calls in the call centre $=?$
- State 1 = Operator is busy (i.e. \#calls in the call centre =?
$P_{0}(t)=$ Prob. 0 call in the call centre at time t
$P_{1}(t)=$ Prob. 1 call in the call centre at time t

We try to express $P_{0}(t+\Delta t)$ in terms of $P_{0}(t)$ and $P_{1}(t)$

- No call at call centre at $t+\Delta t$ can be caused by

Question: Why do we NOT have to consider the following possibility: No customer at time $t \& 1$ customer arrives in $[t, t+\Delta t] \&$ the call finishes within $[t, t+\Delta t]$.

Solution (3)

- Similarly, we can show that

$$
P_{1}(t+\Delta t)=P_{0}(t) \lambda \Delta t+P_{1}(t)(1-\mu \Delta t)
$$

- If we let $\Delta t \rightarrow 0$, we have

$$
\begin{aligned}
& \frac{d P_{0}(t)}{d t}=-P_{0}(t) \lambda+P_{1}(t) \mu \\
& \frac{d P_{1}(t)}{d t}=P_{0}(t) \lambda-P_{1}(t) \mu
\end{aligned}
$$

Solution (4)

- We can solve these equations to get

$$
\begin{aligned}
& P_{0}(t)=\frac{\mu}{\lambda+\mu}-\frac{\mu}{\lambda+\mu} e^{-(\mu+\lambda) t} \\
& P_{1}(t)=\frac{\lambda}{\lambda+\mu}+\frac{\mu}{\lambda+\mu} e^{-(\mu+\lambda) t}
\end{aligned}
$$

- This is too complicated, let us look at steady state solution

$$
\begin{aligned}
& P_{0}=P_{0}(\infty)=\frac{\mu}{\lambda+\mu} \\
& P_{1}=P_{1}(\infty)=\frac{\lambda}{\lambda+\mu}
\end{aligned}
$$

Solution (5)

- From the steady state solution, we have
- The probability that an arriving call is rejected
- = The probability that the operator is busy
- =

$$
P_{1}=\frac{\lambda}{\lambda+\mu}
$$

- Let us check whether it makes sense
- For a constant μ, if the arrival rate rate λ increases, will the probability that the operator is busy go up or down?
- Does the formula give the same prediction?

An alternative interpretation

- We have derived the following equation:
$P_{0}(t+\Delta t)=P_{0}(t)(1-\lambda \Delta t)+P_{1}(t) \mu \Delta t$
- Which can be rewritten as:
$P_{0}(t+\Delta t)-P_{0}(t)=-P_{0}(t) \lambda \Delta t+P_{1}(t) \mu \Delta t$
- At steady state:

Change in Prob in State $0=0$
$\Rightarrow 0=-P_{0} \lambda \Delta t+P_{1} \mu \Delta t$
Rate of leaving state 0
Rate of entering state 0

Faster way to obtain steady state solution (1)

- Transition from State 0 to State 1
- Caused by an arrival, the rate is λ
- Transition from State 1 to State 0
- Caused by a completed service, the rate is μ
- State diagram representation
- Each circle is a state
- Label the arc between the states with transition rate

Faster way to obtain steady state solution (2)

- Steady state means
- rate of transition out of a state = Rate of transition into a state
- We have for state 0 :

$$
\underline{\lambda P_{0}}=\mu P_{1}
$$

Faster way to obtain steady state solution (3)

- We can do the same for State 1 :
- Steady state means
- Rate of transition into a state = rate of transition out of a state
- We have for state 1 :

$$
\underline{\lambda P_{0}}=\underline{\mu P_{1}}
$$

Faster way to obtain steady state solution (4)

- We have one equation $\lambda P_{0}=\mu P_{1}$
- We have 2 unknowns and we need one more equation.
- Since we must be either one of the two states:

$$
P_{0}+P_{1}=1
$$

- Solving these two equations, we get the same steady state solution as before

$$
P_{0}=\frac{\mu}{\lambda+\mu} \quad P_{1}=\frac{\lambda}{\lambda+\mu}
$$

Summary

- Solving a queueing problem is not simple
- It is harder to find how a queue evolves with time
- It is simpler to find how a queue behaves at steady state
- Procedure:
- Draw a diagram with the states
- Add arcs between states with transition rates
- Derive flow balance equation for each state, i.e.
- Rate of entering a state = Rate of leaving a state
- Solve the equation for steady state probability

Let us have a look at our call centre problem again

- Consider a call centre
- Calls are arriving according to Poisson distribution with rate λ
- The length of each call is exponentially distributed with parameter μ
- Mean length of a call is $1 / \mu$

Call centre:

- We solve the problem for $m=1$ and $n=0$
- We call this a $M / M / 1 / 1$ queue (explanation on the next page)
- How about other values of m and n

Kendall's notation

- To represent different types of queues, queueing theorists use the Kendall's notation
- The call centre example on the previous page can be represented as:

Inter-arrival distribution is Markovian i.e. Exponential

Service time distribution is Markovian i.e exponential

Buffer Positions
(wait room)

Number of servers

The call centre example on the last page is a $M / M / m /(m+n)$ queue If $n=\infty$, we simply write $M / M / m$

M/M/1 queue

Exponential Inter-arrivals (λ)
Exponential Service time (μ)

Infinite buffer One server

- Consider a call centre analogy
- Calls are arriving according to Poisson distribution with rate λ
- The length of each call is exponentially distributed with parameter μ
- Mean length of a call is $1 / \mu$

$\xrightarrow{\text { Arrivals }}$| Call centre with 1 operator |
| :--- |
| If the operator is busy, the centre will put |
| the call on hold. |
| A customer will wait until his call is answered. |

- Queueing theory will be able to answer these questions:
- What is the mean waiting time for a call?

Solving M/M/1 queue (1)

- We will solve for the steady state response
- Define the states of the queue
- State $0=$ There is zero job in the system (= The server is idle)
- State $1=$ There is 1 job in the system (= 1 job at the server, no job queueing)
- State 2 = There are 2 jobs in the system (= 1 job at the server, 1 job queueing)
- State $k=$ There are k jobs in the system (= 1 job at the server, $k-1$ job queueing)
- The state transition diagram

Solving M/M/1 queue (2)

$P_{k}=$ Prob. k jobs in system

$$
\begin{aligned}
& \lambda P_{0}=\mu P_{1} \\
& \Rightarrow P_{1}=\frac{\lambda}{\mu} P_{0}
\end{aligned}
$$

Solving M/M/1 queue (3)

$$
\lambda P_{1}=\mu P_{2}
$$

$$
\Rightarrow P_{2}=\frac{\lambda}{\mu} P_{1} \Rightarrow P_{2}=\left(\frac{\lambda}{\mu}\right)^{2} P_{0}
$$

Solving M/M/1 queue (4)

$\lambda P_{2}=\mu P_{3}$
$\Rightarrow P_{3}=\frac{\lambda}{\mu} P_{2} \Rightarrow P_{3}=\left(\frac{\lambda}{\mu}\right)^{3} P_{0}$

Solving M/M/1 queue (5)

$$
\begin{aligned}
& \text { In general } P_{k}=\left(\frac{\lambda}{\mu}\right)^{k} P_{0} \\
& \text { Let } \rho=\frac{\lambda}{\mu}
\end{aligned}
$$

$$
\text { We have } P_{k}=\rho^{k} P_{0}
$$

Solving M/M/1 queue (6)

$$
\begin{aligned}
& \text { With } P_{k}=\rho^{k} P_{0} \text { and } \\
& P_{0}+P_{1}+P_{2}+P_{3}+\ldots=1 \\
& \Rightarrow\left(1+\rho+\rho^{2}+\ldots\right) P_{0}=1
\end{aligned}
$$

$$
\Rightarrow P_{0}=1-\rho \text { if } \rho<1 \quad \begin{aligned}
& \rho=\text { utilisation } \\
& =\text { Prob server is busy } \\
& =1
\end{aligned}
$$

$$
=1-P_{0}
$$

$$
\Rightarrow P_{k}=(1-\rho) \rho^{k}
$$

$$
=1 \text { - Prob server is idle }
$$

Since $\rho=\frac{\lambda}{\mu} \quad, \rho<1 \Rightarrow \lambda<\mu$
Arrival rate < service rate

Solving M/M/1 queue (7)

With $\quad P_{k}=(1-\rho) \rho^{k}$

This is the probability that there are k jobs in the system.
To find the response time, we will make use of Little's law.
First we need to find the mean number of customers =

$$
\begin{aligned}
\sum_{k=0}^{\infty} k P_{k} & =\sum_{k=0}^{\infty} k(1-\rho) \rho^{k} \\
& =\frac{\rho}{1-\rho}
\end{aligned}
$$

Solving M/M/1 queue (8)

Little's law:
mean number of customers $=$ throughput x response time
Throughput is λ (why?)

Response time $T=\frac{\rho}{\lambda(1-\rho)}=\frac{1}{\mu-\lambda}$

Solving M/M/1 queue (9)

What is the mean waiting time at the queue?

Mean waiting time $=$ mean response time $\boldsymbol{-}$ mean service time

We know mean response time (from last slide)

Mean service time is $=1 / \mu$

Using the service time parameter $(1 / \boldsymbol{\mu}=15 \mathrm{~ms})$ in the
example, let us see how response time T varies with λ

$$
T=\frac{1}{\mu(1-\rho)}
$$

Observation: Response time increases sharply when ρ gets close to 1

Infinite queue assumption means $\rho \rightarrow 1$,
$\mathrm{T} \rightarrow \infty$

Multi-server queues M/M/m

Exponential
Inter-arrivals (λ)
Exponential
Service time (μ)

m servers

All arrivals go into one queue.

Customers can be served by any one of the m servers.

When a customer arrives

- If all servers are busy, it will join the queue
- Otherwise, it will be served by one of the available servers

A call centre analogy of $\mathrm{M} / \mathrm{M} / \mathrm{m}$ queue

- Consider a call centre analogy
- Calls are arriving according to Poisson distribution with rate λ
- The length of each call is exponentially distributed with parameter μ
- Mean length of a call is $1 / \mu$

$\xrightarrow{\text { Arrivals }}$| Call centre with m operators |
| :--- |
| If all m operators are busy, the centre will put
 the call on hold.
 A customer will wait until his call is answered. |

State transition for M/M/m

M/M/m

- Following the same method, we have mean response time T is

$$
\begin{gathered}
T=\frac{C(\rho, m)}{m \mu(1-\rho)}+\frac{1}{\mu} \\
\text { where } \quad \rho=\frac{\lambda}{m \mu} \\
C(\rho, m)=\frac{\frac{(m \rho)^{m}}{m!}}{(1-\rho) \sum_{k=0}^{m-1} \frac{(m \rho)^{k}}{k!}+\frac{(m \rho)^{m}}{m!}}
\end{gathered}
$$

Multi-server queues $\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}$ with no waiting room

An arrival can be served by any one of the m servers.

When a customer arrives

- If all servers are busy, it will depart from the system
- Otherwise, it will be served by one of the available servers

A call centre analogy of $\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}$ queue

- Consider a call centre analogy
- Calls are arriving according to Poisson distribution with rate λ
- The length of each call is exponentially distributed with parameter μ
- Mean length of a call is $1 / \mu$

Probability that an arrival is blocked
= Probability that there are m customers in the system

$$
P_{m}=\frac{\frac{\rho^{m}}{m!}}{\sum_{k=0}^{m} \frac{\rho^{k}}{k!}} \quad \text { where } \quad \rho=\frac{\lambda}{\mu}
$$

"Erlang B formula"

Poisson arrivals see time averages (PASTA)

- $P_{n}=$ Probability that there are n jobs in the system
- $A_{n}=$ Probability that an arriving customer finds n jobs in the system
- If the arrival process is Poisson, then $A_{n}=P_{n}$
- Proof: Need to show the following two expressions are equal.
$A_{n}=\lim _{t \rightarrow \infty} \lim _{\delta \rightarrow 0} \operatorname{Prob}[n$ jobs in the system at time $t \mid$ an arrival occurs in $(t, t+\delta)$]
$P_{n}=\lim _{t \rightarrow \infty} \operatorname{Prob}[n$ jobs in the system at time $t]$
- Key step in the proof, Poisson arrival means

Prob [an arrival occurs in $(t, t+\delta) \mid n$ jobs in the system at time t]
$=$ Prob [an arrival occurs in $(t, t+\delta)$]

- To be completed in class

What configuration has the best response time?

Try out the tutorial question!

Configuration 3:

References

- Recommended reading
- Queues with Poisson arrival are discussed in
- Bertsekas and Gallager, Data Networks, Sections 3.3 to 3.4.3
- Note: I derived the formulas here using continuous Markov chain but Bertsekas and Gallager used discrete Markov chain
- Mor Harchal-Balter. Chapters 13 and 14
- Poisson arrival sees time averages (PASTA)
- See R.W. Wolff, "Poisson Arrivals See Time Averages", Operational Research, Vol 30, No 2, pp.223-231
- (Accessible within UNSW) www.jstor.org/stable/170165

