11. Kernel Lower Bounds
 COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Contents

1 Reminder 1
2 Further Examples of Kernels 1
2.1 Kernel for Hamiltonian CyClE 1
2.2 Kernel for Edge Clique Cover 2
3 Frequently Arising Issues 3
4 Kernel Lower Bounds 4
4.1 Compositions 5
4.2 Polynomial Parameter Transformations 6
5 Further Reading 7

1 Reminder

Kernelization

Definition 1. A kernelization (kernel) for a parameterized problem Π is a polynomial time algorithm, which, for any instance I of Π with parameter k, produces an equivalent instance I^{\prime} of Π with parameter k^{\prime} such that $\left|I^{\prime}\right| \leq f(k)$ and $k^{\prime} \leq f(k)$ for a computable function f. We refer to the function f as the size of the kernel.

Fixed-parameter tractability

Definition 2. A parameterized problem Π is fixed-parameter tractable (FPT) if there is an algorithm solving Π in time $f(k) \cdot \operatorname{poly}(n)$, where n is the instance size, k is the parameter, poly is a polynomial function, and f is a computable function.

Theorem 3. Let Π be a decidable parameterized problem. Π has a kernelization $\Leftrightarrow \Pi$ is FPT.

2 Further Examples of Kernels

2.1 Kernel for Hamiltonian Cycle

A Hamiltonian cycle of G is a subgraph of G that is a cycle on $|V(G)|$ vertices.

```
vc-Hamiltonian Cycle
    Input: A graph G=(V,E).
    Parameter: }\quadk=vc(G),\mathrm{ the size of a smallest vertex cover of G.
    Question: Does G have a Hamiltonian cycle?
```

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?
Issue: We do not actually know a vertex cover of size k.

- Obtain a vertex cover of size $\leq 2 k$ by applying Vertex Cover-kernelizations to $(G, 0),(G, 1), \ldots$ until the first instance where no trivial No-instance is returned.
- If C is a vertex cover of size $\leq 2 k$, then $I=V \backslash C$ is an independent set of size $\geq|V|-2 k$.
- No two consecutive vertices in the Hamiltonian Cycle can be in I.
- A kernel with $\leq 4 k$ vertices can now be obtained with the following simplification rule.
(Too-large)
Compute a vertex cover C of size $\leq 2 k$ in polynomial time. If $2|C|<|V|$, then return No

2.2 Kernel for Edge Clique Cover

Definition 4. An edge clique cover of a graph $G=(V, E)$ is a set of cliques in G covering all its edges. In other words, if $\mathcal{C} \subseteq 2^{V}$ is an edge clique cover then each $S \in \mathcal{C}$ is a clique in G and for each $\{u, v\} \in E$ there exists an $S \in \mathcal{C}$ such that $u, v \in S$.

Example: $\{\{a, b, c\},\{b, c, d, e\}\}$ is an edge clique cover for this graph.


```
Edge Clique Cover
    Input: \(\quad\) A graph \(G=(V, E)\) and an integer \(k\)
    Parameter: \(k\)
    Question: \(\quad\) Does \(G\) have an edge clique cover of size at most \(k\) ?
```

The size of an edge clique cover \mathcal{C} is the number of cliques contained in \mathcal{C} and is denoted $|\mathcal{C}|$.

Helpful properties

Definition 5. A clique S in a graph G is a maximal clique if there is no other clique S^{\prime} in G with $S \subset S^{\prime}$.
Lemma 6. A graph G has an edge clique cover \mathcal{C} of size at most k if and only if G has an edge clique cover \mathcal{C}^{\prime} of size at most k such that each $S \in \mathcal{C}^{\prime}$ is a maximal clique.

Proof sketch. (\Rightarrow) : Replace each clique $S \in \mathcal{C}$ by a maximal clique S^{\prime} with $S \subseteq S^{\prime}$.
(\Leftarrow) : Trivial, since \mathcal{C}^{\prime} is an edge clique cover of size at most k.

Simplification rules for Edge Clique Cover

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?
The instance could have many degree-0 vertices.
(Isolated)
If there exists a vertex $v \in V$ with $d_{G}(v)=0$, then set $G \leftarrow G-v$.
Lemma 7. (Isolated) is sound.
Proof sketch. Since no edge is incident to v, a smallest edge clique cover for $G-v$ is a smallest edge clique cover for G, and vice-versa.

(Isolated-Edge)

If $\exists u v \in E$ such that $d_{G}(u)=d_{G}(v)=1$, then set $G \leftarrow G-\{u, v\}$ and $k \leftarrow k-1$.

(Twins)

If $\exists u, v \in V, u \neq v$, such that $N_{G}[u]=N_{G}[v]$, then set $G \leftarrow G-v$.
Lemma 8. (Twins) is sound.
Proof. We need to show that G has an edge clique cover of size at most k if and only if $G-v$ has an edge clique cover of size at most k.
(\Rightarrow) : If \mathcal{C} is an edge clique cover of G of size at most k, then $\{S \backslash\{v\}: S \in \mathcal{C}\}$ is an edge clique cover of $G-v$ of size at most k.
(\Leftarrow) : Let \mathcal{C}^{\prime} be an edge clique cover of $G-v$ of size at most k. Partition \mathcal{C} into $\mathcal{C}_{u}=\{S \in \mathcal{C}: u \in S\}$ and $\mathcal{C}_{\neg u}=\mathcal{C} \backslash \mathcal{C}_{u}$. Note that each set in $\mathcal{C}_{u}^{\prime}=\left\{S \cup\{v\}: S \in \mathcal{C}_{u}\right\}$ is a clique since $N_{G}[u]=N_{G}[v]$ and that each edge incident to v is contained in at least one of these cliques. Now, $\mathcal{C}_{u}^{\prime} \cup \mathcal{C}_{\neg u}$ is an edge clique cover of G of size at most k.
(Size-V)
If the previous simplification rules do not apply and $|V|>2^{k}$, then return No.
Lemma 9. (Size-V) is sound.
Proof. For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, $|V|>2^{k}$, and G has an edge clique cover \mathcal{C} of size at most k. Since $2^{\mathcal{C}}$ (the set of all subsets of \mathcal{C}) has size at most 2^{k}, and every vertex belongs to at least one clique in \mathcal{C} by (Isolated), we have that there exists two vertices $u, v \in V$ such that $\{S \in \mathcal{C}: u \in S\}=\{S \in \mathcal{C}: v \in S\}$. But then, $N_{G}[u]=\bigcup_{S \in \mathcal{C}: u \in S} S=\bigcup_{S \in \mathcal{C}: v \in S} S=N_{G}[v]$, contradicting that (Twin) is not applicable.

Kernel for Edge Clique Cover

Theorem 10. Edge Clique Cover has a kernel with $O\left(2^{k}\right)$ vertices and $O\left(4^{k}\right)$ edges.
Corollary 11. Edge Clique Cover is FPT.

3 Frequently Arising Issues

Issue 1: A kernelization needs to produce an instance of the same problem.
How could we turn the following lemma into a simplification rule?
Lemma 12. If there is an edge $\{u, v\} \in E$ such that $S=N_{G}[u] \cap N_{G}[v]$ is a clique, then there is a smallest edge clique cover \mathcal{C} with $S \in \mathcal{C}$.

Proof. By Lemma 6, we may assume the clique covering the edge $\{u, v\}$ is a maximal clique. But, S is the unique maximal clique covering $\{u, v\}$.

(Neighborhood-Clique)

If there exists $\{u, v\} \in E$ such that $S=N_{G}[u] \cap N_{G}[v]$ is a clique, then $\ldots ? ? ?$
Edges with both endpoints in $S \backslash\{u, v\}$ are covered by S but might still be needed in other cliques.
We could design a kernelization for a more general problem.

Generalized Edge Clique Cover	
Input:	A graph $G=(V, E)$, a set of edges $R \subseteq E$, and an integer k
Parameter:	k
Question:	Is there a set \mathcal{C} of at most k cliques in G such that each $e \in R$ is contained in at least one of
	these cliques?

(Neighborhood-Clique)

If there exists $\{u, v\} \in R$ such that $S=N_{G}[u] \cap N_{G}[v]$ is a clique, then set $G \leftarrow(V, E \backslash\{u, v\}), R \leftarrow R \backslash\{\{x, y\}$: $x, y \in S\}$, and $k \leftarrow k-1$.

Issue 2: A proposed simplification rule might not be sound.
Consider the following simplification rule for Vertex Cover.
(Optimistic-Degree- $(\geq k)$)
If $\exists v \in V$ such that $d_{G}(v) \geq k$, then set $G \leftarrow G-v$ and $k \leftarrow k-1$.
To show that a simplification rule is not sound, we exhibit a counter-example.
Lemma 13. (Optimistic-Degree- $(\geq k)$) is not sound for Vertex Cover.
Proof. Consider the instance consisting of the following graph and $k=3$.

Since $M=\left\{\left\{a_{i}, b_{i}\right\}: 1 \leq i \leq 3\right\}$ is a matching, a vertex cover contains at least one endpoint of each edge in M. The rule would add c to the vertex cover, leading to a vertex cover of size at least 4 . However, $\left\{a_{i}: 1 \leq i \leq 3\right\}$ is a vertex cover of size 3 .

Issue 3: A problem might be FPT, but only an exponential kernel might be known / possible to achieve.

4 Kernel Lower Bounds

Polynomial vs. exponential kernels

- For some FPT problems, only exponential kernels are known.
- Could it be that all FPT problems have polynomial kernels?
- We will see that polynomial kernels for some fixed-parameter tractable parameterized problems would contradict complexity-theoretic assumptions.

Intuition by example

LONG Path	
Input:	A graph $G=(V, E)$, and an integer $k \leq\|V\|$.
Parameter:	k
Question:	Does G have a path of length at least k (as a subgraph)?

Long Path is NP-complete but FPT.

- Assume Long Path has a k^{c} kernel, where $c=O(1)$.
- Set $q=k^{c}+1$ and consider q instances with the same parameter k :

$$
\left(G_{1}, k\right),\left(G_{2}, k\right), \ldots,\left(G_{q}, k\right)
$$

- Let $G=G_{1} \oplus G_{2} \oplus \cdots \oplus G_{q}$ be the disjoint union of all these graphs.
- Note that (G, k) is a Yes-instance if and only if at least one of $\left(G_{i}, k\right), 1 \leq i \leq q$, is a Yes-instance.
- Kernelizing (G, k) gives an instance of size k^{c}, i.e., on average less than one bit per original instance.
- "The kernelization must have solved at least one of the original NP-hard instances in polynomial time".
- Note that this is not a rigorous argument, and we will make this more formal now.

4.1 Compositions

Distillation

Definition 14. Let Π_{1}, Π_{2} be two problems. An OR-distillation (resp., AND-distillation) from Π_{1} into Π_{2} is a polynomial time algorithm D whose input is a sequence I_{1}, \ldots, I_{q} of instances for Π_{1} and whose output is an instance I^{\prime} for Π_{2} such that

- $\left|I^{\prime}\right| \leq \operatorname{poly}\left(\max _{1 \leq i \leq q}\left|I_{i}\right|\right)$, and
- I^{\prime} is a Yes-instance for Π_{2} if and only if for at least one (resp., for each) $i \in\{1, \ldots, q\}$ we have that I_{i} is a Yes-instance for Π_{1}.

NP-complete problems don't have distillations

Theorem 15 ([Fortnow, Santhanam, 2008]). If any NP-complete problem has an OR-distillation, then coNP \subseteq NP/poly. ${ }^{1}$

Note: coNP $\subseteq \mathrm{NP} /$ poly is not believed to be true and it would imply that the polynomial hierarchy collapses to the third level: $\mathrm{PH} \subseteq \Sigma_{3}^{p}$.

Theorem 16 ([Drucker, 2012]). If any NP-complete problem has an AND-distillation, then coNP \subseteq NP/poly.

Composition algorithms

Definition 17. Let Π be a parameterized problem. An OR-composition (resp., AND-composition) of Π is a polynomial time algorithm A that receives as input a finite sequence I_{1}, \ldots, I_{q} of Π with parameters $k_{1}=\cdots=$ $k_{q}=k$ and outputs an instance I^{\prime} for Π with parameter k^{\prime} such that

- $k^{\prime} \leq \operatorname{poly}(k)$, and
- I^{\prime} is a Yes-instance for Π if and only if for at least one (resp., for each) $i \in\{1, \ldots, q\}, I_{i}$ is a Yes-instance for Π.

Tool for showing kernel lower bounds

Theorem 18 (Composition Theorem). Let Π be an NP-complete parameterized problem such that for each instance I of Π with parameter k, the value of the parameter k can be computed in polynomial time and $k \leq|I|$. If Π has an OR-composition or an AND-composition, then Π has no polynomial kernel, unless coNP $\subseteq \mathrm{NP} / \mathrm{poly}$.

Proof sketch. Suppose Π has an OR/AND-composition and a polynomial kernel. Then, one can obtain an OR/ANDdistillation from Π into $\operatorname{OR}(\Pi) / \operatorname{AND}(\Pi)$.

$$
\begin{array}{rccrl}
I_{1} & I_{2} & \ldots & I_{q} & q \text { instances of size } \leq n=\max _{1 \leq i \leq q}\left|I_{i}\right| \\
\left\{I_{i}: k_{i}=0\right\} \ldots & \left.\ldots I_{i}: k_{i}=n\right\} & \text { group by parameter } \\
I_{0}^{\prime} & I_{1}^{\prime} & \ldots & I_{n}^{\prime} & \text { After OR-composition: } n+1 \text { instances with } k_{i}^{\prime} \leq \operatorname{poly}(n) \\
I_{0}^{\prime \prime} & I_{1}^{\prime \prime} & \ldots & I_{n}^{\prime \prime} & \text { After kernelization: } n+1 \text { instances of size poly }(n) \text { each } \\
& & & & \text { This is an instance of } \operatorname{OR}(\Pi) \text { of size } \operatorname{poly}(n) .
\end{array}
$$

Long Path has no polynomial kernel

Theorem 19. Long Path has no polynomial kernel unless $\mathrm{NP} \subseteq$ coNP/poly.
Proof. Clearly, k can be computed in polynomial time and $k \leq|V|$. We give an OR-composition for Long Path, which will prove the theorem by the previous lemma. It receives as input a sequence of instances for Long Path: $\left(G_{1}, k\right), \ldots,\left(G_{q}, k\right)$, and it produces the instance $\left(G_{1} \oplus \cdots \oplus G_{q}, k\right)$, which is a Yes-instance if and only if at least one of $\left(G_{1}, k\right), \ldots,\left(G_{q}, k\right)$ is a Yes-instance.

[^0]```
var-SAT
 Input: A propositional formula F in conjunctive normal form (CNF)
 Parameter: }n=|var(F)|, the number of variables in
 Question: Is there an assignment to var(F) satisfying all clauses of F?
```

Example:

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)
$$

or

$$
\left\{\left\{x_{1}, x_{2}\right\},\left\{\neg x_{2}, x_{3}, \neg x_{4}\right\},\left\{x_{1}, x_{4}\right\},\left\{\neg x_{1}, \neg x_{3}, \neg x_{4}\right\}\right\}
$$

Theorem 20. var-SAT has no polynomial kernel unless $\mathrm{NP} \subseteq$ coNP/poly.
Proof. Clearly, $\operatorname{var}(F)$ can be computed in polynomial time and $n=|\operatorname{var}(F)| \leq|F|$. We give an OR-composition for var-SAT, which will prove the theorem by the previous lemma.

- Let $F_{1}, \ldots, F_{q}$ be CNF formulas, $\left|F_{i}\right| \leq m,\left|\operatorname{var}\left(F_{i}\right)\right|=n$.
- We can decide whether one of the formulas is satisfiable in time poly $\left(m t 2^{n}\right)$. Hence, if $q>2^{n}$, the check is polynomial. If some formula is satisfiable, we output this formula, otherwise we output $F_{1}$.
- It remains the case $q \leq 2^{n}$. We assume $\operatorname{var}\left(F_{1}\right)=\cdots=\operatorname{var}\left(F_{q}\right)$, otherwise we change the names of variables.
- Let $s=\left\lceil\log _{2} q\right\rceil$. Since $q \leq 2^{n}$, we have that $s \leq n$.
- We take a set $Y=\left\{y_{1}, \ldots, y_{s}\right\}$ of new variables. Let $C_{1}, \ldots, C_{2^{s}}$ be the sequence of all $2^{s}$ possible clauses containing exactly $s$ literals over the variables in $Y$.
- For $1 \leq i \leq q$ we let $F_{i}^{\prime}=\left\{C \cup C_{i}: C \in F_{i}\right\}$.
- We define $F=\bigcup_{i=1}^{q} F_{i}^{\prime} \cup\left\{C_{i}: q+1 \leq i \leq 2^{s}\right\}$.
- Claim: $F$ is satisfiable if and only if $F_{i}$ is satisfiable for some $1 \leq i \leq q$.
- Hence we have an OR-composition.


### 4.2 Polynomial Parameter Transformations

## Another tool for showing kernel lower bounds

Definition 21. Let $\Pi_{1}, \Pi_{2}$ be parameterized problems. A polynomial parameter transformation from $\Pi_{1}$ to $\Pi_{2}$ is a polynomial time algorithm, which, for any instance $I_{1}$ of $\Pi_{1}$ with parameter $k_{1}$, produces an equivalent instance $I_{2}$ of $\Pi_{2}$ with parameter $k_{2}$ such that $k_{2} \leq \operatorname{poly}\left(k_{1}\right)$.
Theorem 22. Let $\Pi_{1}, \Pi_{2}$ be parameterized problems such that $\Pi_{1}$ is NP-complete, $\Pi_{2}$ is in NP, and there is a polynomial parameter transformation from $\Pi_{1}$ to $\Pi_{2}$. If $\Pi_{2}$ has a polynomial kernel, then $\Pi_{1}$ has a polynomial kernel.
Remark: If we know that an NP-complete parameterized problem $\Pi_{1}$ has no polynomial kernel (unless NP $\subseteq$ coNP/poly), we can use the theorem to show that some other NP-complete parameterized problem $\Pi_{2}$ has no polynomial kernel (unless NP $\subseteq$ coNP/poly) by giving a polynomial parameter transformation from $\Pi_{1}$ to $\Pi_{2}$.

Proof. - We show that under the assumptions of the theorem $\Pi_{1}$ has a polynomial kernel.

- Let $I_{1}$ be an instance of $\Pi_{1}$ with parameter $k_{1}$.
- We obtain in polynomial time an equivalent instance $I_{2}$ of $\Pi_{2}$ with parameter $k_{2} \leq \operatorname{poly}\left(k_{1}\right)$.
- We apply $\Pi_{2}$ 's kernelization and obtain $I_{2}^{\prime}$ of size $\leq \operatorname{poly}\left(k_{1}\right)$.
- Since $\Pi_{2}$ is in NP and $\Pi_{1}$ is NP-complete, there exists a polynomial time reduction that maps $I_{2}^{\prime}$ to an equivalent instance $I_{1}^{\prime}$ of $\Pi_{1}$.
- The size of $I_{1}^{\prime}$ is polynomial in $k_{1}$.


## 2CNF-Backdoor Evaluation

Definition 23. A CNF formula $F$ is a 2CNF formula if each clause of $F$ has at most 2 literals.
Note: SAT is polynomial time solvable when the input is restricted to be a 2CNF formula.
Definition 24. A 2CNF-backdoor of a CNF formula $F$ is a set of variables $B \subseteq \operatorname{var}(F)$ such that for each assignment $\alpha: B \rightarrow\{0,1\}$, the formula $F[\alpha]$ is a 2CNF formula. Here, $F[\alpha]$ is obtained by removing all clauses containing a literal set to 1 by $\alpha$, and removing the literals set to 0 from all remaining clauses.

```
2CNF-BACKDOOR Evaluation
 Input: A CNF formula F and a 2CNF-backdoor B of F
 Parameter: }k=|B
 Question: Is F satisfiable?
```

Note: the problem is FPT by trying all assignments to $B$ and evaluating the resulting formulas.
Theorem 25. 2CNF-BAckDoor Evaluation has no polynomial kernel unless $\mathrm{NP} \subseteq$ coNP/poly.
Proof. We give a polynomial parameter transformation from var-SAT to 2CNF-Backdoor Evaluation. Let $F$ be an instance for var-SAT. Then, $(F, B=\operatorname{var}(F))$ is an equivalent instance for 2CNF-Backdoor Evaluation with $|B| \leq|\operatorname{var}(F)|$.

## 5 Further Reading

- Chapter 15, Lower bounds for kernelization in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, MichałPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 30 (30.1-30.4), Kernelization Lower Bounds in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower bounds on kernelization. Discrete Optimization 8(1): 110-128 (2011).


[^0]:    ${ }^{1} \mathrm{NP} /$ poly is the class of all decision problems for which there exists a polynomial-time nondeterministic Turing Machine $M$ with the following property: for every $n \geq 0$, there is an advice string $A$ of length poly $(n)$ such that, for every input $I$ of length $n$, the machine $M$ correctly decides the problem with input $I$, given $I$ and $A$.

