11. Kernel Lower Bounds
COMP6741: Parameterized and Exact Computation

Serge Gaspers
Semester 2, 2017

Contents

I_Reminder] 1

2 Further Examples of Kernels| 1
2.1 Kernel for HAMILTONIAN CYCLE]l o 0 o s e e e 1
2.2 Kernel for EDGE CLIQUE COVER| 0 e e e e e e e e e e e e 2

[3 Frequently Arising Issues| 3

4_Kernel Lower Bounds| 4
4.1 Compositions| o e e e e e e e e e 5
4.2 Polynomial Parameter Transformations| o oo 6

[5 Further Reading| 7

1 Reminder

Kernelization

Definition 1. A kernelization (kernel) for a parameterized problem II is a polynomial time algorithm, which,
for any instance I of II with parameter k, produces an equivalent instance I’ of II with parameter k' such that
[I'| < f(k) and k' < f(k) for a computable function f. We refer to the function f as the size of the kernel.

Fixed-parameter tractability

Definition 2. A parameterized problem II is fized-parameter tractable (FPT) if there is an algorithm solving II
in time f(k) - poly(n), where n is the instance size, k is the parameter, poly is a polynomial function, and f is a
computable function.

Theorem 3. Let II be a decidable parameterized problem. 11 has a kernelization < 11 is FPT.

2 Further Examples of Kernels

2.1 Kernel for Hamiltonian Cycle

A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V(G)| vertices.

vc-HAMILTONIAN CYCLE
Input: A graph G = (V, E).
Parameter: &k = vc(G), the size of a smallest vertex cover of G.
Question: Does G have a Hamiltonian cycle?

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an
instance?
Issue: We do not actually know a vertex cover of size k.

e Obtain a vertex cover of size < 2k by applying VERTEX COVER-kernelizations to (G,0), (G,1),... until the
first instance where no trivial NO-instance is returned.

o If C is a vertex cover of size < 2k, then I =V \ C' is an independent set of size > |V| — 2k.
e No two consecutive vertices in the Hamiltonian Cycle can be in I.
e A kernel with < 4k vertices can now be obtained with the following simplification rule.

(Too-large)
Compute a vertex cover C' of size < 2k in polynomial time. If 2|C| < |V, then return No

2.2 Kernel for Edge Clique Cover

Definition 4. An edge clique cover of a graph G = (V, E) is a set of cliques in G covering all its edges. In other
words, if C C 2" is an edge clique cover then each S € C is a clique in G and for each {u,v} € E there exists an
S € C such that u,v € S.

Example: {{a,b,c},{b,c,d,e}} is an edge clique cover for this graph.

EDpGE CLIQUE COVER
Input: A graph G = (V, E) and an integer k
Parameter: k
Question: Does G have an edge clique cover of size at most k7

The size of an edge clique cover C is the number of cliques contained in C and is denoted |C]|.

Helpful properties
Definition 5. A clique S in a graph G is a mazimal clique if there is no other clique S’ in G with S C §".

Lemma 6. A graph G has an edge clique cover C of size at most k if and only if G has an edge clique cover C' of
size at most k such that each S € C' is a mazximal clique.

Proof sketch. (=): Replace each clique S € C by a maximal clique S’ with S C S’
(«<): Trivial, since C’ is an edge clique cover of size at most k. O

Simplification rules for Edge Clique Cover

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an
instance?

The instance could have many degree-0 vertices.

(Isolated)
If there exists a vertex v € V with dg(v) = 0, then set G + G — v.

Lemma 7. (Isolated) is sound.

Proof sketch. Since no edge is incident to v, a smallest edge clique cover for G — v is a smallest edge clique cover
for G, and vice-versa. O

(Isolated-Edge)
If Juv € E such that dg(u) = dg(v) = 1, then set G < G — {u,v} and k + k — 1.

(Twins)
If Ju,v € V, u # v, such that Ng[u] = Ng[v], then set G < G — v.

Lemma 8. (Twins) is sound.

Proof. We need to show that G has an edge clique cover of size at most k if and only if G — v has an edge clique
cover of size at most k.

(=): If C is an edge clique cover of G of size at most k, then {S\ {v} : S € C} is an edge clique cover of G — v
of size at most k.

(<): Let C' be an edge clique cover of G — v of size at most k. Partition C into C,, = {S € C : u € S} and
C-. = C\ C,. Note that each set in C], = {SU{v}: S € C,} is a clique since Ng[u] = Ng[v] and that each edge
incident to v is contained in at least one of these cliques. Now, C!, UC-, is an edge clique cover of G of size at most
k. O

(Size-V)
If the previous simplification rules do not apply and |V/| > 2¥, then return No.
Lemma 9. (Size-V) is sound.

Proof. For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, |V| > 2% and G has
an edge clique cover C of size at most k. Since 2¢ (the set of all subsets of C) has size at most 2%, and every
vertex belongs to at least one clique in C by (Isolated), we have that there exists two vertices u,v € V such that
{SeC:ueS}={SeC:veS} Butthen, Nglul = UgccinesS = Useciwes S = Nalv], contradicting that
(Twin) is not applicable. O
Kernel for Edge Clique Cover

Theorem 10. EpDGE CLIQUE COVER has a kernel with O(2%) vertices and O(4%) edges.

Corollary 11. EDGE CLIQUE COVER is FPT.

3 Frequently Arising Issues
Issue 1: A kernelization needs to produce an instance of the same problem.

How could we turn the following lemma into a simplification rule?

Lemma 12. If there is an edge {u,v} € E such that S = Ng[u] N Ng[v] is a clique, then there is a smallest edge
clique cover C with S € C.

Proof. By Lemma@ we may assume the clique covering the edge {u, v} is a maximal clique. But, S is the unique
maximal clique covering {u,v}. O

(Neighborhood-Clique)
If there exists {u,v} € E such that S = Ng[u] N Ng[v] is a clique, then ...777?

Edges with both endpoints in S\ {u, v} are covered by S but might still be needed in other cliques.
We could design a kernelization for a more general problem.

GENERALIZED EDGE CLIQUE COVER

Input: A graph G = (V, E), a set of edges R C F, and an integer k
Parameter: k
Question: Is there a set C of at most k cliques in GG such that each e € R is contained in at least one of

these cliques?

(Neighborhood-Clique)
If there exists {u,v} € R such that S = Ng[u] N Ng[v] is a clique, then set G < (V, E \ {u,v}), R+ R\ {{z,y}:
x,y € S} and k + k — 1.

Issue 2: A proposed simplification rule might not be sound.
Consider the following simplification rule for VERTEX COVER.

(Optimistic-Degree-(> k))
If Jv € V such that dg(v) > k, then set G <+~ G —v and k + k — 1.

To show that a simplification rule is not sound, we exhibit a counter-example.
Lemma 13. (Optimistic-Degree-(> k)) is not sound for VERTEX COVER.
Proof. Consider the instance consisting of the following graph and k = 3.

az bo
by ay ¢
as b3

Since M = {{a;,b;} : 1 < i < 3} is a matching, a vertex cover contains at least one endpoint of each edge in M.
The rule would add ¢ to the vertex cover, leading to a vertex cover of size at least 4. However, {a; : 1 <i <3} isa
vertex cover of size 3. O

Issue 3: A problem might be FPT, but only an exponential kernel might be known / possible to achieve.

4 Kernel Lower Bounds
Polynomial vs. exponential kernels

e For some FPT problems, only exponential kernels are known.
e Could it be that all FPT problems have polynomial kernels?

e We will see that polynomial kernels for some fixed-parameter tractable parameterized problems would con-
tradict complexity-theoretic assumptions.

Intuition by example

LonG PaTH
Input: A graph G = (V, E), and an integer k < |V].
Parameter: k
Question: Does G have a path of length at least k& (as a subgraph)?

LoNG PATH is NP-complete but FPT.

e Assume LONG PATH has a k¢ kernel, where ¢ = O(1).

e Set ¢ = k°+ 1 and consider ¢ instances with the same parameter k:

(G1,k),(Ga,k),...,(Gg, k).

o Let G=G1 ®G2® - ® G, be the disjoint union of all these graphs.

e Note that (G, k) is a YEs-instance if and only if at least one of (G;,k),1 < i < g, is a YES-instance.

e Kernelizing (G, k) gives an instance of size k¢, i.e., on average less than one bit per original instance.

e “The kernelization must have solved at least one of the original NP-hard instances in polynomial time”.

e Note that this is not a rigorous argument, and we will make this more formal now.

4.1 Compositions
Distillation

Definition 14. Let II;,II; be two problems. An OR-distillation (resp., AND-distillation) from II; into Iy is a
polynomial time algorithm D whose input is a sequence Ii,...,I; of instances for II; and whose output is an
instance I’ for Il such that

(] |I/‘ S poly(maxlgigq |IZ|), and
e [’ is a YEs-instance for Il if and only if for at least one (resp., for each) i € {1,...,q} we have that I; is a
YEs-instance for II;.
NP-complete problems don’t have distillations

Theorem 15 ([Fortnow, Santhanam, 2008]). If any NP-complete problem has an OR-distillation, then coNP C
NP /poly. E|

Note: coNP C NP/poly is not believed to be true and it would imply that the polynomial hierarchy collapses to
the third level: PH C X£.

Theorem 16 ([Drucker, 2012]). If any NP-complete problem has an AND-distillation, then coNP C NP /poly.

Composition algorithms

Definition 17. Let II be a parameterized problem. An OR-composition (resp., AND-composition) of II is a
polynomial time algorithm A that receives as input a finite sequence Iy, ..., I, of II with parameters k; = --- =
k, = k and outputs an instance I’ for II with parameter k&’ such that

e k' < poly(k), and

e I’ is a YEs-instance for II if and only if for at least one (resp., for each) i € {1,...,¢}, I; is a YEs-instance
for II.

Tool for showing kernel lower bounds

Theorem 18 (Composition Theorem). Let IT be an NP-complete parameterized problem such that for each instance
I of T with parameter k, the value of the parameter k can be computed in polynomial time and k < |I|. If II has
an OR-composition or an AND-composition, then II has no polynomial kernel, unless coNP C NP /poly.

Proof sketch. Suppose IT has an OR/AND-composition and a polynomial kernel. Then, one can obtain an OR/AND-
distillation from IT into OR(IT)/AND(II).

I I I, q instances of size <n = max |[;|
a 1<i<
<i<q

{I; : k; =0}...{I; : k; =n} group by parameter

I, I . I After OR-composition: n + 1 instances with &} < poly(n)
Il Iy . I After kernelization: n + 1 instances of size poly(n) each

This is an instance of OR(II) of size poly(n).

Long Path has no polynomial kernel
Theorem 19. LONG PATH has no polynomial kernel unless NP C coNP /poly.

Proof. Clearly, k can be computed in polynomial time and k < |V|. We give an OR-composition for LONG PATH,
which will prove the theorem by the previous lemma. It receives as input a sequence of instances for LONG PATH:
(G1,k),...,(Gq, k), and it produces the instance (G1 & - - - @ Gy, k), which is a YEs-instance if and only if at least
one of (G1,k),...,(Gy, k) is a YES-instance. O

INP /poly is the class of all decision problems for which there exists a polynomial-time nondeterministic Turing Machine M with the

following property: for every m > 0, there is an advice string A of length poly(n) such that, for every input I of length n, the machine
M correctly decides the problem with input I, given I and A.

var-SAT has no poly kernel

var-SAT
Input: A propositional formula F' in conjunctive normal form (CNF)
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F') satisfying all clauses of F?
Example:
(1 V) A(ma2 VasVoxg) Az Vag) A(nxy V —xg Vo)
or

{1, 2o}, {—2a, w3, ~xa}, {xr, 24}, {2y, g, ~2a}}
Theorem 20. var-SAT has no polynomial kernel unless NP C coNP /poly.

Proof. Clearly, var(F') can be computed in polynomial time and n = |var(F)| < |F|. We give an OR-composition
for var-SAT, which will prove the theorem by the previous lemma.

e Let F,..., F, be CNF formulas, |F;| < m, |var(F;)| = n.

e We can decide whether one of the formulas is satisfiable in time poly(mt2™). Hence, if ¢ > 2™, the check is
polynomial. If some formula is satisfiable, we output this formula, otherwise we output Fj.

e It remains the case ¢ < 2". We assume var(Fy) = --- = var(Fy), otherwise we change the names of variables.
e Let s = [log, q]. Since ¢ < 2™, we have that s < n.

e We take a set Y = {y1,...,ys} of new variables. Let Cy,...,Cas be the sequence of all 2° possible clauses
containing exactly s literals over the variables in Y.

e Forl1<i<gwelet F/={CUC;:C € F;}.
e We define F =J_, F/ U{C;: q+1<i<25}.
e Claim: F is satisfiable if and only if F; is satisfiable for some 1 < i <gq.

e Hence we have an OR-composition.

4.2 Polynomial Parameter Transformations

Another tool for showing kernel lower bounds

Definition 21. Let II;, II5 be parameterized problems. A polynomial parameter transformation from I1; to Il is a
polynomial time algorithm, which, for any instance I of II; with parameter k;, produces an equivalent instance
I of T with parameter ko such that ko < poly(kq).

Theorem 22. Let 111,y be parameterized problems such that 11y is NP-complete, 11y is in NP, and there is a
polynomial parameter transformation from IIy to Ils. If Tly has a polynomial kernel, then II; has a polynomial
kernel.

Remark: If we know that an NP-complete parameterized problem II; has no polynomial kernel (unless NP C
coNP/poly), we can use the theorem to show that some other NP-complete parameterized problem Il has no
polynomial kernel (unless NP C coNP /poly) by giving a polynomial parameter transformation from Iy to Ils.

Proof. e We show that under the assumptions of the theorem II; has a polynomial kernel.
e Let I; be an instance of II; with parameter k.

e We obtain in polynomial time an equivalent instance I of Il with parameter ko < poly(k1).

We apply IIy’s kernelization and obtain I} of size < poly(k1).

Since I is in NP and II; is NP-complete, there exists a polynomial time reduction that maps I} to an
equivalent instance I] of I;.

e The size of I is polynomial in k.

2CNF-Backdoor Evaluation
Definition 23. A CNF formula F' is a 2CNF formula if each clause of F' has at most 2 literals.
Note: SAT is polynomial time solvable when the input is restricted to be a 2CNF formula.

Definition 24. A 2CNF-backdoor of a CNF formula F is a set of variables B C var(F') such that for each assignment
a: B — {0,1}, the formula F[a] is a 2CNF formula. Here, Fa] is obtained by removing all clauses containing a
literal set to 1 by «, and removing the literals set to 0 from all remaining clauses.

2CNF-BACKDOOR EVALUATION
Input: A CNF formula F' and a 2CNF-backdoor B of F
Parameter: k= |B|
Question: Is F satisfiable?

Note: the problem is FPT by trying all assignments to B and evaluating the resulting formulas.
Theorem 25. 2CNF-BACKDOOR EVALUATION has no polynomial kernel unless NP C coNP /poly.

Proof. We give a polynomial parameter transformation from var-SAT to 2CNF-BACKDOOR EVALUATION. Let F
be an instance for var-SAT. Then, (F, B = var(F')) is an equivalent instance for 2CNF-BACKDOOR EVALUATION
with |B| < |var(F)|. O

5 Further Reading

e Chapter 15, Lower bounds for kernelization in Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lok-
shtanov, Daniel Marx, Marcin Pilipczuk, MichalPilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

e Chapter 30 (30.1-30.4), Kernelization Lower Bounds in Rodney G. Downey and Michael R. Fellows. Funda-
mentals of Parameterized Complexity. Springer, 2013.

e Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower bounds on kernelization. Discrete Optimiza-
tion 8(1): 110-128 (2011).

	Reminder
	Further Examples of Kernels
	Kernel for Hamiltonian Cycle
	Kernel for Edge Clique Cover

	Frequently Arising Issues
	Kernel Lower Bounds
	Compositions
	Polynomial Parameter Transformations

	Further Reading

