11. Kernel Lower Bounds

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Contents

1	Reminder	1
2	Further Examples of Kernels 2.1 Kernel for Hamiltonian Cycle	
3	Frequently Arising Issues	3
4	Kernel Lower Bounds4.1 Compositions4.2 Polynomial Parameter Transformations	5 6
5	Further Reading	7

1 Reminder

Kernelization

Definition 1. A kernelization (kernel) for a parameterized problem Π is a **polynomial time** algorithm, which, for any instance I of Π with parameter k, produces an **equivalent** instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f. We refer to the function f as the size of the kernel.

Fixed-parameter tractability

Definition 2. A parameterized problem Π is *fixed-parameter tractable* (FPT) if there is an algorithm solving Π in time $f(k) \cdot \mathsf{poly}(n)$, where n is the instance size, k is the parameter, poly is a polynomial function, and f is a computable function.

Theorem 3. Let Π be a decidable parameterized problem. Π has a kernelization $\Leftrightarrow \Pi$ is FPT.

2 Further Examples of Kernels

2.1 Kernel for Hamiltonian Cycle

A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V(G)| vertices.

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

Issue: We do not actually know a vertex cover of size k.

- Obtain a vertex cover of size $\leq 2k$ by applying VERTEX COVER-kernelizations to $(G,0),(G,1),\ldots$ until the first instance where no trivial No-instance is returned.
- If C is a vertex cover of size $\leq 2k$, then $I = V \setminus C$ is an independent set of size $\geq |V| 2k$.
- \bullet No two consecutive vertices in the Hamiltonian Cycle can be in I.
- A kernel with $\leq 4k$ vertices can now be obtained with the following simplification rule.

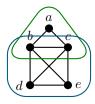
(Too-large)

Compute a vertex cover C of size $\leq 2k$ in polynomial time. If 2|C| < |V|, then return No

2.2 Kernel for Edge Clique Cover

Definition 4. An edge clique cover of a graph G = (V, E) is a set of cliques in G covering all its edges. In other words, if $C \subseteq 2^V$ is an edge clique cover then each $S \in C$ is a clique in G and for each $\{u, v\} \in E$ there exists an $S \in C$ such that $u, v \in S$.

Example: $\{\{a, b, c\}, \{b, c, d, e\}\}\$ is an edge clique cover for this graph.



EDGE CLIQUE COVER

Input: A graph G = (V, E) and an integer k

Parameter: k

Question: Does G have an edge clique cover of size at most k?

The size of an edge clique cover \mathcal{C} is the number of cliques contained in \mathcal{C} and is denoted $|\mathcal{C}|$.

Helpful properties

Definition 5. A clique S in a graph G is a maximal clique if there is no other clique S' in G with $S \subset S'$.

Lemma 6. A graph G has an edge clique cover C of size at most k if and only if G has an edge clique cover C' of size at most k such that each $S \in C'$ is a maximal clique.

Proof sketch. (\Rightarrow): Replace each clique $S \in \mathcal{C}$ by a maximal clique S' with $S \subseteq S'$.

 (\Leftarrow) : Trivial, since \mathcal{C}' is an edge clique cover of size at most k.

Simplification rules for Edge Clique Cover

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex $v \in V$ with $d_G(v) = 0$, then set $G \leftarrow G - v$.

Lemma 7. (Isolated) is sound.

Proof sketch. Since no edge is incident to v, a smallest edge clique cover for G - v is a smallest edge clique cover for G, and vice-versa.

(Isolated-Edge)

If $\exists uv \in E$ such that $d_G(u) = d_G(v) = 1$, then set $G \leftarrow G - \{u, v\}$ and $k \leftarrow k - 1$.

(Twins)

If $\exists u, v \in V$, $u \neq v$, such that $N_G[u] = N_G[v]$, then set $G \leftarrow G - v$.

Lemma 8. (Twins) is sound.

Proof. We need to show that G has an edge clique cover of size at most k if and only if G - v has an edge clique cover of size at most k.

(⇒): If C is an edge clique cover of G of size at most k, then $\{S \setminus \{v\} : S \in C\}$ is an edge clique cover of G - v of size at most k.

(\Leftarrow): Let \mathcal{C}' be an edge clique cover of G-v of size at most k. Partition \mathcal{C} into $\mathcal{C}_u=\{S\in\mathcal{C}:u\in S\}$ and $\mathcal{C}_{\neg u}=\mathcal{C}\setminus\mathcal{C}_u$. Note that each set in $\mathcal{C}'_u=\{S\cup\{v\}:S\in\mathcal{C}_u\}$ is a clique since $N_G[u]=N_G[v]$ and that each edge incident to v is contained in at least one of these cliques. Now, $\mathcal{C}'_u\cup\mathcal{C}_{\neg u}$ is an edge clique cover of G of size at most k.

(Size-V)

If the previous simplification rules do not apply and $|V| > 2^k$, then return No.

Lemma 9. (Size-V) is sound.

Proof. For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, $|V| > 2^k$, and G has an edge clique cover \mathcal{C} of size at most k. Since $2^{\mathcal{C}}$ (the set of all subsets of \mathcal{C}) has size at most 2^k , and every vertex belongs to at least one clique in \mathcal{C} by (Isolated), we have that there exists two vertices $u, v \in V$ such that $\{S \in \mathcal{C} : u \in S\} = \{S \in \mathcal{C} : v \in S\}$. But then, $N_G[u] = \bigcup_{S \in \mathcal{C}: u \in S} S = \bigcup_{S \in \mathcal{C}: v \in S} S = N_G[v]$, contradicting that (Twin) is not applicable.

Kernel for Edge Clique Cover

Theorem 10. Edge Clique Cover has a kernel with $O(2^k)$ vertices and $O(4^k)$ edges.

Corollary 11. Edge Clique Cover is FPT.

3 Frequently Arising Issues

Issue 1: A kernelization needs to produce an instance of the same problem.

How could we turn the following lemma into a simplification rule?

Lemma 12. If there is an edge $\{u,v\} \in E$ such that $S = N_G[u] \cap N_G[v]$ is a clique, then there is a smallest edge clique cover C with $S \in C$.

Proof. By Lemma 6, we may assume the clique covering the edge $\{u, v\}$ is a maximal clique. But, S is the unique maximal clique covering $\{u, v\}$.

(Neighborhood-Clique)

If there exists $\{u,v\} \in E$ such that $S = N_G[u] \cap N_G[v]$ is a clique, then ...???

Edges with both endpoints in $S \setminus \{u, v\}$ are covered by S but might still be needed in other cliques.

We could design a kernelization for a more general problem.

Generalized Edge Clique Cover

Input: A graph G = (V, E), a set of edges $R \subseteq E$, and an integer k

Parameter: k

Question: Is there a set \mathcal{C} of at most k cliques in G such that each $e \in R$ is contained in at least one of

these cliques?

(Neighborhood-Clique)

If there exists $\{u,v\} \in R$ such that $S = N_G[u] \cap N_G[v]$ is a clique, then set $G \leftarrow (V, E \setminus \{u,v\}), R \leftarrow R \setminus \{\{x,y\}: x,y \in S\}$, and $k \leftarrow k-1$.

Issue 2: A proposed simplification rule might not be sound.

Consider the following simplification rule for Vertex Cover.

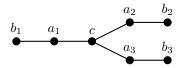
(Optimistic-Degree- $(\geq k)$)

If $\exists v \in V$ such that $d_G(v) \geq k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

To show that a simplification rule is not sound, we exhibit a counter-example.

Lemma 13. (Optimistic-Degree- $(\geq k)$) is not sound for Vertex Cover.

Proof. Consider the instance consisting of the following graph and k=3.



Since $M = \{\{a_i, b_i\} : 1 \le i \le 3\}$ is a matching, a vertex cover contains at least one endpoint of each edge in M. The rule would add c to the vertex cover, leading to a vertex cover of size at least 4. However, $\{a_i : 1 \le i \le 3\}$ is a vertex cover of size 3.

Issue 3: A problem might be FPT, but only an exponential kernel might be known / possible to achieve.

4 Kernel Lower Bounds

Polynomial vs. exponential kernels

- For some FPT problems, only exponential kernels are known.
- Could it be that all FPT problems have polynomial kernels?
- We will see that polynomial kernels for some fixed-parameter tractable parameterized problems would contradict complexity-theoretic assumptions.

Intuition by example

Long Path

Input: A graph G = (V, E), and an integer $k \leq |V|$.

Parameter: k

Question: Does G have a path of length at least k (as a subgraph)?

LONG PATH is NP-complete but FPT.

- Assume Long Path has a k^c kernel, where c = O(1).
- Set $q = k^c + 1$ and consider q instances with the same parameter k:

$$(G_1,k),(G_2,k),\ldots,(G_q,k).$$

- Let $G = G_1 \oplus G_2 \oplus \cdots \oplus G_q$ be the disjoint union of all these graphs.
- Note that (G, k) is a YES-instance if and only if at least one of (G_i, k) , $1 \le i \le q$, is a YES-instance.
- Kernelizing (G, k) gives an instance of size k^c , i.e., on average less than one bit per original instance.
- "The kernelization must have solved at least one of the original NP-hard instances in polynomial time".
- Note that this is not a rigorous argument, and we will make this more formal now.

4.1 Compositions

Distillation

Definition 14. Let Π_1, Π_2 be two problems. An OR-distillation (resp., AND-distillation) from Π_1 into Π_2 is a polynomial time algorithm D whose input is a sequence I_1, \ldots, I_q of instances for Π_1 and whose output is an instance I' for Π_2 such that

- $|I'| \leq \operatorname{poly}(\max_{1 \leq i \leq q} |I_i|)$, and
- I' is a YES-instance for Π_2 if and only if for at least one (resp., for each) $i \in \{1, ..., q\}$ we have that I_i is a YES-instance for Π_1 .

NP-complete problems don't have distillations

Theorem 15 ([Fortnow, Santhanam, 2008]). If any NP-complete problem has an OR-distillation, then $coNP \subseteq NP/poly$.

Note: $coNP \subseteq NP/poly$ is not believed to be true and it would imply that the polynomial hierarchy collapses to the third level: $PH \subseteq \Sigma_3^p$.

Theorem 16 ([Drucker, 2012]). If any NP-complete problem has an AND-distillation, then $conP \subseteq NP/poly$.

Composition algorithms

Definition 17. Let Π be a parameterized problem. An OR-composition (resp., AND-composition) of Π is a polynomial time algorithm A that receives as input a finite sequence I_1, \ldots, I_q of Π with parameters $k_1 = \cdots = k_q = k$ and outputs an instance I' for Π with parameter k' such that

- $k' \leq \text{poly}(k)$, and
- I' is a YES-instance for Π if and only if for at least one (resp., for each) $i \in \{1, ..., q\}$, I_i is a YES-instance for Π .

Tool for showing kernel lower bounds

Theorem 18 (Composition Theorem). Let Π be an NP-complete parameterized problem such that for each instance I of Π with parameter k, the value of the parameter k can be computed in polynomial time and $k \leq |I|$. If Π has an OR-composition or an AND-composition, then Π has no polynomial kernel, unless $conn \subseteq NP/poly$.

Proof sketch. Suppose Π has an OR/AND-composition and a polynomial kernel. Then, one can obtain an OR/AND-distillation from Π into OR(Π)/AND(Π).

$$\begin{array}{lll} I_1 & I_2 & \dots & I_q & q \text{ instances of size } \leq n = \max_{1 \leq i \leq q} |I_i| \\ \{I_i: k_i = 0\} \dots \{I_i: k_i = n\} & \text{group by parameter} \\ I'_0 & I'_1 & \dots & I'_n & \text{After OR-composition: } n+1 \text{ instances with } k'_i \leq \mathsf{poly}(n) \\ I''_0 & I''_1 & \dots & I''_n & \text{After kernelization: } n+1 \text{ instances of size poly}(n) \text{ each} \\ & & \text{This is an instance of OR}(\Pi) \text{ of size poly}(n). \end{array}$$

Long Path has no polynomial kernel

Theorem 19. Long Path has no polynomial kernel unless $NP \subseteq coNP/poly$.

Proof. Clearly, k can be computed in polynomial time and $k \leq |V|$. We give an OR-composition for Long Path, which will prove the theorem by the previous lemma. It receives as input a sequence of instances for Long Path: $(G_1, k), \ldots, (G_q, k)$, and it produces the instance $(G_1 \oplus \cdots \oplus G_q, k)$, which is a Yes-instance if and only if at least one of $(G_1, k), \ldots, (G_q, k)$ is a Yes-instance.

 $^{^{1}}$ NP/poly is the class of all decision problems for which there exists a polynomial-time nondeterministic Turing Machine M with the following property: for every $n \geq 0$, there is an *advice* string A of length poly(n) such that, for every input I of length n, the machine M correctly decides the problem with input I, given I and A.

var-SAT has no poly kernel

var- SAT

Input: A propositional formula F in conjunctive normal form (CNF)

Parameter: n = |var(F)|, the number of variables in F

Question: Is there an assignment to var(F) satisfying all clauses of F?

Example:

$$(x_1 \lor x_2) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

or

$$\{\{x_1, x_2\}, \{\neg x_2, x_3, \neg x_4\}, \{x_1, x_4\}, \{\neg x_1, \neg x_3, \neg x_4\}\}$$

Theorem 20. var-SAT has no polynomial kernel unless $NP \subseteq coNP/poly$.

Proof. Clearly, var(F) can be computed in polynomial time and $n = |var(F)| \le |F|$. We give an OR-composition for var-SAT, which will prove the theorem by the previous lemma.

- Let F_1, \ldots, F_q be CNF formulas, $|F_i| \leq m$, $|\mathsf{var}(F_i)| = n$.
- We can decide whether one of the formulas is satisfiable in time $poly(mt2^n)$. Hence, if $q > 2^n$, the check is polynomial. If some formula is satisfiable, we output this formula, otherwise we output F_1 .
- It remains the case $q \leq 2^n$. We assume $var(F_1) = \cdots = var(F_q)$, otherwise we change the names of variables.
- Let $s = \lceil \log_2 q \rceil$. Since $q \leq 2^n$, we have that $s \leq n$.
- We take a set $Y = \{y_1, \ldots, y_s\}$ of new variables. Let C_1, \ldots, C_{2^s} be the sequence of all 2^s possible clauses containing exactly s literals over the variables in Y.
- For $1 \le i \le q$ we let $F'_i = \{C \cup C_i : C \in F_i\}.$
- We define $F = \bigcup_{i=1}^{q} F'_i \cup \{C_i : q+1 \le i \le 2^s\}.$
- Claim: F is satisfiable if and only if F_i is satisfiable for some $1 \le i \le q$.
- Hence we have an OR-composition.

4.2 Polynomial Parameter Transformations

Another tool for showing kernel lower bounds

Definition 21. Let Π_1, Π_2 be parameterized problems. A polynomial parameter transformation from Π_1 to Π_2 is a polynomial time algorithm, which, for any instance I_1 of Π_1 with parameter k_1 , produces an **equivalent** instance I_2 of Π_2 with parameter k_2 such that $k_2 \leq \mathsf{poly}(k_1)$.

Theorem 22. Let Π_1, Π_2 be parameterized problems such that Π_1 is NP-complete, Π_2 is in NP, and there is a polynomial parameter transformation from Π_1 to Π_2 . If Π_2 has a polynomial kernel, then Π_1 has a polynomial kernel

Remark: If we know that an NP-complete parameterized problem Π_1 has no polynomial kernel (unless NP \subseteq coNP/poly), we can use the theorem to show that some other NP-complete parameterized problem Π_2 has no polynomial kernel (unless NP \subseteq coNP/poly) by giving a polynomial parameter transformation from Π_1 to Π_2 .

Proof. • We show that under the assumptions of the theorem Π_1 has a polynomial kernel.

- Let I_1 be an instance of Π_1 with parameter k_1 .
- We obtain in polynomial time an equivalent instance I_2 of Π_2 with parameter $k_2 \leq \mathsf{poly}(k_1)$.
- We apply Π_2 's kernelization and obtain I'_2 of size $\leq \text{poly}(k_1)$.
- Since Π_2 is in NP and Π_1 is NP-complete, there exists a polynomial time reduction that maps I'_2 to an equivalent instance I'_1 of Π_1 .
- The size of I'_1 is polynomial in k_1 .

2CNF-Backdoor Evaluation

Definition 23. A CNF formula F is a 2CNF formula if each clause of F has at most 2 literals.

Note: SAT is polynomial time solvable when the input is restricted to be a 2CNF formula.

Definition 24. A 2CNF-backdoor of a CNF formula F is a set of variables $B \subseteq \text{var}(F)$ such that for each assignment $\alpha: B \to \{0,1\}$, the formula $F[\alpha]$ is a 2CNF formula. Here, $F[\alpha]$ is obtained by removing all clauses containing a literal set to 1 by α , and removing the literals set to 0 from all remaining clauses.

2CNF-Backdoor Evaluation

Input: A CNF formula F and a 2CNF-backdoor B of F

Parameter: k = |B|

Question: Is F satisfiable?

Note: the problem is FPT by trying all assignments to B and evaluating the resulting formulas.

Theorem 25. 2CNF-BACKDOOR EVALUATION has no polynomial kernel unless NP \subseteq coNP/poly.

Proof. We give a polynomial parameter transformation from var-SAT to 2CNF-BACKDOOR EVALUATION. Let F be an instance for var-SAT. Then, $(F, B = \mathsf{var}(F))$ is an equivalent instance for 2CNF-BACKDOOR EVALUATION with $|B| \leq |\mathsf{var}(F)|$.

5 Further Reading

- Chapter 15, Lower bounds for kernelization in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, MichałPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Chapter 30 (30.1–30.4), Kernelization Lower Bounds in Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower bounds on kernelization. Discrete Optimization 8(1): 110-128 (2011).