
More about inheritance
Exploring polymorphism

4.1

COMP1400
Week 11

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Main concepts to be covered

•  method polymorphism

•  static and dynamic type

•  overriding

•  dynamic method lookup

•  protected access

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

The inheritance hierarchy

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

DoME classes
Without inheritance With inheritance

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Conflicting output

CD: A Swingin' Affair (64 mins)*
 Frank Sinatra
 tracks: 16
 my favourite Sinatra album

DVD: O Brother, Where Art Thou? (106 mins)
 Joel & Ethan Coen
 The Coen brothers’ best movie!

title: A Swingin' Affair (64 mins)*
 my favourite Sinatra album

title: O Brother, Where Art Thou? (106 mins)
 The Coen brothers’ best movie!

What we want

What we have

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

The problem

•  The print method in Item only prints
the common fields.

•  Inheritance is a one-way street:

•  A subclass inherits the superclass fields.

•  The superclass knows nothing about its
subclass’s fields.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Attempting to solve the
problem

•  Place print where it
has access to the
information it needs.

•  Each subclass has its
own version.

•  But Item’s fields are
private.

•  Database cannot
find a print method
in Item.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Static type and dynamic type

•  A more complex type hierarchy requires
further concepts to describe it.

•  Some new terminology:

•  static type

•  dynamic type

•  method dispatch/lookup

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Static and dynamic type

Car c1 = new Car(); What is the type of c1?

Vehicle v1 = new Car(); What is the type of v1?

The type of the variable v1 is Vehicle

the type of the object stored in v1 is Car.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Static and dynamic type

•  The declared type of a variable is its static
type.

•  The type of the object a variable refers to is its
dynamic type.

•  The compiler’s job is to check for static-type
violations. �
�
for (Item item: items)
{
 item.print(); // Compile-time error.
}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Static and dynamic type

•  The static type of a variable v is the type
as declared in the source code in the
variable declaration statement.

•  The dynamic type of a variable v is the
type of the object that is currently stored
in v.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Overriding: the solution

print method
in both super-
and subclasses.

Satisfies both
static and

dynamic type
checking.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Overriding

•  Superclass and subclass define methods with
the same signature.

•  Each has access to the fields of its class.

•  Superclass satisfies static type check.

•  Subclass method is called at runtime – it
overrides the superclass version.

•  What becomes of the superclass version?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Method lookup

No inheritance or polymorphism.
The obvious method is selected.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Method lookup

Inheritance but no
overriding. The

inheritance hierarchy is
ascended, searching for

a match.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Method lookup

Polymorphism and
overriding. The

‘first’ version found
is used.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Method lookup summary
•  The variable is accessed.

•  The object stored in the variable is found.

•  The class of the object is found.

•  The class is searched for a method match.

•  If no match is found, the superclass is
searched.

•  This is repeated until a match is found, or
the class hierarchy is exhausted.

•  Overriding methods take precedence.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Super call in methods

•  Overridden methods are hidden ...

•  ... but we often still want to be able to call
them.

•  An overridden method can be called from
the method that overrides it.

– super.method(...)
•  Compare with the use of super in

constructors.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Calling an overridden
method

public class CD
{
 ...
 public void print()
 {
 super.print();
 System.out.println(" " + artist);
 System.out.println(" tracks: " + numberOfTracks);
 }
 ...
}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Calling an overridden
method

Contrary to the case of super calls in constructors:

•  The method name of the superclass method is explicitly stated.

•  A super call in a method always has the form:

super.method-name (parameters) The parameter list can be empty.

•  The super call in methods may occur anywhere within that method.
It does not have to be the first statement.

•  No automatic super call is generated and no super call is required;
it is entirely optional. �

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Method polymorphism

•  We have been discussing polymorphic
method dispatch.

•  A polymorphic variable can store objects of
varying types.

•  Method calls are polymorphic.

•  The actual method called depends on
the dynamic object type.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

The Object class’s methods

•  Methods in Object are inherited by all
classes.

•  Any of these may be overridden.

•  The toString method is commonly
overridden:

 public String toString()

•  Returns a string representation of the
object.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Overriding toString
public class Item
{
 ...

 public String toString()
 {
 String line1 = title + " (" + playingTime + " mins)");

 if (gotIt)
 {
 return line1 + "*\n" + " " + comment + "\n");
 }

else
 {
 return line1 + "\n" + " " + comment + "\n");
 }
 }
 ...
}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Overriding toString

•  Explicit print methods can often be
omitted from a class:

–  System.out.println(item.toString());

•  Calls to println with just an object
automatically result in toString being
called:

–  System.out.println(item);

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Object equality

•  What does it mean for two objects to be
‘the same’?

•  Reference equality.

•  Content equality.

•  Compare the use of == with .equals()

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Overriding the equals
method

public boolean equals(Object obj)
{
 if (this == obj)
 return true;

 if (! (obj instanceof ThisType))
 return false;

 ThisType other = (ThisType) obj;

 … compare fields of this and other
}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Overriding equals in Student
public boolean equals(Object obj)
{
 if (this == obj)
 return true;

 if (! (obj instanceof Student))
 return false;

 Student other = (Student) obj;

 return name.equals(other.name) &&
 id.equals(other.id) &&
 credits == other.credits;
}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Overriding hashCode in Student

/**
 * Hashcode technique taken from
 * Effective Java by Joshua Bloch.
 */
public int hashCode()
{
 int result = 17;
 result = 37 * result + name.hashCode();
 result = 37 * result + id.hashCode();
 result = 37 * result + credits;
 return result;
}

two objects that are the same as determined by a call to equals must
return identical values from hashCode.

This is beyond the scope of this subject!

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Protected access

•  Private access in the superclass may be too
restrictive for a subclass.

•  The closer inheritance relationship is
supported by protected access.

•  Protected access is more restricted than
public access.

•  We still recommend keeping fields private.

•  Define protected accessors and mutators.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Access levels

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Review
•  The declared type of a variable is its static

type.

•  Compilers check static types.

•  The type of an object is its dynamic type.

•  Dynamic types are used at runtime.

•  Methods may be overridden in a subclass.

•  Method lookup starts with the dynamic
type.

•  Protected access supports inheritance.

