More about inheritance

Exploring polymorphism

COMPI1400
Week | |

Main concepts to be covered

® method polymorphism
® static and dynamic type
® overriding

® dynamic method lookup
o

protected access

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

The inheritance hierarchy

Database

T =

rint

CD DVD

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

DoME classes

Without inheritance

]

Enn! 2

CcD DVD
title title
artist director
numberOfTracks playingTime
playingTime gotlt
gotlt comment
comment setComment
setComment getComment
getComment setOwn
setOwn getOwn
getOwn @

class

private ArrayList<CD> cds;

Database {

private ArrayList<DVD> dvds;

public void list()

{

for(CD cd : cds)

{
cd.print() ;

System.out.println() ;

}

for (DVD dvd : dvds)

{
dvd.print() ;

System.out.println();

}

With inheritance

// empty line between items

// empty line between items

Item
title
playingTime
gotlt
comment
setComment
getComment
setOwn
getOwn
< | prin
CD
artist : DVD
numberOfTracks director
getArtist getDlrector
getNumberOfT racks
/ %* %

* Print a list of all currently stored CDs and

* DVDs to the text terminal.

*/
public void list()
{

for (Item item: items)

{

item.print();

// Print an empty line between items

System.out.println() ;

}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Conflicting output

CD: A Swingin' Affair (64 mins)*
Frank Sinatra
tracks: 16

my favourite Sinatra album

DVD: O Brother, Where Art Thou? (106 mins)
Joel & Ethan Coen

The Coen brothers’ best movie!

title: A Swingin' Affair (64 mins)*
my favourite Sinatra album

title: O Brother, Where Art Thou? (106 mins)
The Coen brothers’ best movie!

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

The problem

® The print method in Item only prints

the common fields.

® Inheritance is a one-way street:

® A subclass inherits the superclass fields.

® The superclass knows nothing about its

subclass’s fields.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Attempting to solve the

Database

problem

Item

AN

CD

DVD

print

print

Place print where it
has access to the
information it needs.

Each subclass has its
ownh version.

But Item’s fields are
private.

Database cannot
find a print method
in ITtem.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Static type and dynamic type

® A more complex type hierarchy requires

further concepts to describe it.

® Some new terminology:

® static type

® dynamic type

® method dispatch/lookup

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Static and dynamic type

@the typ@ Car cl = new Car():;

The type of the variable v1 is Vehicle

@ the typ@ Vehicle vl = new Car();

the type of the object stored in v1 is Car.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Static and dynamic type

The declared type of a variable is its static
type.

The type of the object a variable refers to is its
dynamic type.

The compiler’s job is to check for static-type
violations.

for (Item item: items)

{
}

item.print() ;

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Static and dynamic type

The static type of a variable v is the type
as declared in the source code in the
variable declaration statement.

The dynamic type of a variable v is the
type of the object that is currently stored
In V.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Overriding: the solution

Database

Item

~
—

CD

print

frint

DVD

print

print method
in both super-
and subclasses.

Satisfies both
static and
dynamic type
checking.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Overriding

Superclass and subclass define methods with
the same signature.

Each has access to the fields of its class.
Superclass satisfies static type check.

Subclass method is called at runtime — it
overrides the superclass version.

What becomes of the superclass version!?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Method lookup

v1.print();

DVD

DVD v1; .

rint
i H
/\ instance of
LJ

No inheritance or polymorphism.
The obvious method is selected.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Method lookup

v1.print(); Iltem
rint
DVD v1; i
DVD
T
. v
instance of
Inheritance but no

‘ =0 | overriding. The

inheritance hierarchy is
ascended, searching for
a match.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Method lookup

v1.print(); Item
rint
Item v1; i
DVD
\
Erint
instance, of

-~

‘ :DVD | Polymorphism and
overriding. The

‘first’ version found

is used.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Method lookup summary

The variable is accessed.
The object stored in the variable is found.
T

ne class of the object is found.

The class is searched for a method match.

If no match is found, the superclass is
searched.

This is repeated until a match is found, or
the class hierarchy is exhausted.

Overriding methods take precedence.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Super call in methods

Overridden methods are hidden ...

... but we often still want to be able to call
them.

An overridden method can be called from
the method that overrides it.

— super.method (.. .)

® Compare with the use of super in
constructors.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Calling an overridden
method

public class CD

{
public void print()
{
super.print() ;
System.out.println (" " + artist);
System.out.println (" tracks: " + numberOfTracks) ;
}
}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Calling an overridden
method

Contrary to the case of super calls in constructors:

¢ The method name of the superclass method is explicitly stated.
¢ A super call in a method always has the form:
super.method-name (parameters) The parameter list can be empty.
¢ The super call in methods may occur anywhere within that method.
It does not have to be the first statement.
°

No automatic super call is generated and no super call is required;
it is entirely optional.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Method polymorphism

We have been discussing polymorphic
method dispatch.

A polymorphic variable can store objects of
varying types.
Method calls are polymorphic.

® The actual method called depends on

the dynamic object type.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

The Obiject class’s methods

® Methods in Object are inherited by all
classes.

Any of these may be overridden.

® The toString method is commonly
overridden:

public String toString ()

® Returns a string representation of the

object.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Overriding toString

public class Item

{
public String toString()
{
String linel = title + " (" + playingTime + " mins)");
if (gotIt)
{
return linel + "*\n" + " " 4+ comment + "\n");
}
else
{
return linel + "\n" + " " 4+ comment + "\n");
}
}
}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Overriding toString

® Explicit print methods can often be
omitted from a class:
— System.out.println(item.toString()) ;
°

Calls to print1n with just an object
automatically result in toString being
called:

— System.out.println(item) ;

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Object equality

® What does it mean for two objects to be

‘the same’?

® Reference equality.

® Content equality.

® Compare the use of == with .equals()

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Overriding the equals
method

public boolean equals (Object obj)

{

if (this == obj)
return true;

if (! (obj instanceof ThisType))
return false;

ThisType other = (ThisType) obj;

. compare fields of this and other

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Overriding equals in Student

public boolean equals (Object obj)

{
if (this == obj)
return true;

if (! (obj instanceof Student))
return false;

Student other = (Student) obj;

return name.equals (other.name) &é&
id.equals (other.id) &&
credits == other.credits;

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Overriding hashCode in Student

two objects that are the same as determined by a call to equals must
return identical values from hashCode.
/**
* Hashcode technique taken from
* Effective Java by Joshua Bloch.
*/
public int hashCode ()

{
int result = 17;
result = 37 * result + name.hashCode () ;
result = 37 * result + id.hashCode() ;
result = 37 * result + credits;
return result;

}

This is beyond the scope of this subject!

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Protected access

Private access in the superclass may be too
restrictive for a subclass.

The closer inheritance relationship is
supported by protected access.

Protected access is more restricted than
public access.

We still recommend keeping fields private.

® Define protected accessors and mutators.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Access levels

public

Client

‘ > private
Subclas Subclass2
=~
protected

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kdlling

Review

The declared type of a variable is its static
type.

® Compilers check static types.

The type of an object is its dynamic type.

® Dynamic types are used at runtime.

Methods may be overridden in a subclass.

Method lookup starts with the dynamic
type.

Protected access supports inheritance.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

