
Remembering Where
and When

COMP3431 Robot Software Architectures

This time ...

• We look at the robot equivalent of spatiotemporal
memory

Probabilistic Robotics

Localisation with Landmarks

Localisation with Edges

 Angle a1

distance d1
distance d2

length g

width w

(0,0)

x,y,theta

Errors

• Measurement errors

• sensors are never 100% accurate

• Process errors

• actions never do exactly what they’re supposed to

Example

• Estimating distance to the ball

! !

Measurement Error
Experiments determine errors in distance estimation

Localisation with Landmarks

(x, y)

Current robot
position according

to world model

h

dNew position estimate
after taking into

account distance to
landmark

Localisation with Landmarks

(x, y)

h

d

Updated position

New position estimate
after taking into

account distance to
landmark

Conditional Probability

P(E|H) ≡ the probability of observing E if H is true

Bayes’ Rule
• Probability I have a cold if you hear me cough

• I.e. if we know the prior probability that I have a
cold (without any evidence) and I know that a cold
causes a cough, with some probability, then we
can calculate the posterior probability

P(cold | cough)∝P(cold)× P(cough | cold)

Probabilistic Inference
• Make inferences using probabilities

• Based on Bayes’ rule:

bel(xt)∝bel(xt−1) × prob(observation)

P(H | E)∝P(H)× P(E |H)

or

Updating State Estimate
• The Kalman filter is commonly used to update the estimate of the robot’s

state

• Two phases:

1. Prediction (Process Update)

• predicts where the robot will be after performing an action

2. Correction (Observation Update)

• use observations to correct prediction

• What follows is only a sketch of the Kalman filter

• It’s nowhere near the complete algorithm

Simplification

• Only one measurement and action

• When there are more, must account for all
interactions

• Math becomes more complex

• Scalar variables are replaced by matrices

Process Update (Simplified)

• is the predicted new state after action, u

• Update variance with process noise, Q

• errors accumulate

x← x + u

varx ← varx +Q

x

Measurement Update
• Move position estimate toward measurement

estimate but proportional to error estimates

• z is the measured state

• new state estimate is predication plus difference
between prediction and measurement, proportional
to confidence in measurement

x← x + K × z − x()

Measurement Update

• update x by the difference in the measured value, z, and the expected
value, x, scaled by how much we trust the observation

• If measurement is certain, new state becomes measured state

• otherwise, make change proportional to difference between
measurement and prediction

x← x + K × z − x()
if K = 1

x← x + z − x
x← z

Measurement Update
(Simplified)

• As measurement error R
approaches 0, actual measurement
z is trusted more and more, while
predicted measurement x̅ is trusted
less and less.

• As state error estimate varx
approaches 0, actual measurement
z is trusted less and less, while
predicted measurement x̅ is trusted
more and more.

K ← varx
varx + R

x← x + K × z − x()

Robot estimating  
state of door

Initial beliefs

bel X0 = open() = 0.5
bel X0 = closed() = 0.5

• Door can be in one of two states, open or closed

• Represented by state variable, X

• Initially, X has equal probability of being open or
closed

Measurement Noise
• Specify the probability of sensor given correct answer

• Z is the measurement, X is the actual value

• Only 0.2 error probability when door is closed

• but 0.4 error probability when door is open

p Zt = sense_open Xt = is_open() = 0.6
p Zt = sense_closed Xt = is_open() = 0.4
p Zt = sense_open Xt = is_closed() = 0.2
p Zt = sense_closed Xt = is_closed() = 0.8

Process Noise
• Robot uses its manipulator to push door open

• If already open, door stays open

• If closed, robot has 0.8 chance that door will be open
after a push

p Xt = is_openUt = push,Xt−1 = is_open() = 1
p Xt = is_closedUt = push,Xt−1 = is_open() = 0
p Xt = is_openUt = push,Xt−1 = is_closed() = 0.8
p Xt = is_closedUt = push,Xt−1 = is_closed() = 0.2

Process Noise
• The robot may do nothing

• World does not change

p Xt = is_openUt = do_nothing,Xt−1 = is_open() = 1
p Xt = is_closedUt = do_nothing,Xt−1 = is_open() = 0
p Xt = is_openUt = do_nothing,Xt−1 = is_closed() = 0
p Xt = is_closedUt = do_nothing,Xt−1 = is_closed() = 1

Probabilistic Robotics

• Belief in a state variable x at time t is its
probability at t given all past measurements and
actions:

• Belief after action ut but before observation zt,  
i.e. after prediction but before correction:

bel xt() = p xt z1..t ,u1..t()

bel xt() = p xt z1..t−1,u1..t()

Bayes’ Rule
• Don’t have to use entire history

• Use Bayes’ Rule

• Belief is a probability distribution over state variable

• Update must sum probabilities of outcomes of
actions for each possible value

bel(xt)∝ prob(observation)× bel(xt−1)

Example
• If door is open and robot pushes,  

what is the outcome?

• If door is open and robot does nothing,  
what is the outcome?

• If door is closed and robot pushes,  
what is the outcome?

• If door is closed and robot does nothing,  
what is the outcome?

Bayes Filter
For all state variables

Predict value after the next action

Update the value based on the next measurement

Prediction for xt is the sum of predictions for each value of xt

Update prediction by last observation

η is a normalising factor to keep probabilities in 0 .. 1.

forall xt do

bel xt() = p xt ut , xt−1()∫ bel xt−1() dxt−1

bel xt() =η p zt xt() bel xt()

Example
• At t = 1 the robot takes no action but senses an open door

• u1 = do_nothing

• z1 = sense_open

bel x1() = p x1 u1, x0()∫ bel x0() dx0
= p x1 u1, x0() bel x0()

x0
∑

= p X1 Ut = do_nothing,Xo = is_open() bel X0 = is_open()
+ p X1 Ut = do_nothing,Xo = is_closed() bel X0 = is_closed()

Integral becomes a sum
because values of x are

discrete

Example
Substitute values for X1

bel x1 = is_open()
= p X1 = is_openUt = do_nothing,Xo = is_open() bel X0 = is_open()
+ p X1 = is_openUt = do_nothing,Xo = is_closed() bel X0 = is_closed()

= 1× 0.5 + 0 × 0.5
= 0.5

bel x1 = is_closed()
= p X1 = is_closedUt = do_nothing,Xo = is_open() bel X0 = is_open()
+ p X1 = is_closedUt = do_nothing,Xo = is_closed() bel X0 = is_closed()

= 0 × 0.5 +1× 0.5
= 0.5

Measurement Update
bel x1() =η p z1 = sense_open x1() bel x1()

bel x1 = is_open() =η p z1 = sense_open x1 = is_open() bel x1 = is_open()
=η × 0.6 × 0.5
=η × 0.3

bel x1 = is_closed() =η p z1 = sense_open x1 = is_closed() bel x1 = is_closed()
=η × 0.2 × 0.5
=η × 0.1

η = 1
0.3+ 0.1

= 2.5

bel x1 = is_open() = 0.75

bel x1 = is_closed() = 0.25

Normalise to ensure that
probabilities add up to 1

Iterate for more actions
If the next action is push and the measurement is
sense_open:

bel x1 = is_open() = 1× 0.75 + 0.8 × 0.25 = 0.95

bel x1 = is_closed() = 0 × 0.75 + 0.2 × 0.25 = 0.05

and

bel x1 = is_open() =η × 0.6 × 0.95 ≈ 0.983

bel x1 = is_closed() =η × 0.2 × 0.05 ≈ 0.017

Position Tracking
• Robot moves

• Predict new position based on what motor
actions are expected to do

• Measure

• Uses sensors to estimate motion

• Update position estimate (often a Kalman Filter)

RoboCup Localisation
• Estimates of robot and ball

positions include variance (or
error)

• Robot has errors in

• x

• y

• heading

• Robot variance is shown as an
ellipse and sector

Particle Filter

Randomly guess
position

Move particles according
to motion model, including
process noise

Weight particles by
probability that measurement
corresponds to particle

Drop low weight particles
and resample

1.

2.

3.

4.

Particle Filter
https://github.com/mjl/particle_filter_demo

Particle Filter
ParticleFilter(χ t−1,ut , zt)
χ t = χ t =∅
for m = 1 to M :

sample xt
[m] ~ p xt |ut ,xt−1

[m]()
wt
[m] = p zt | xt

[m]()
χ t = χ t + xt

[m],wt
[m]

for m = 1 to M :
draw i with probabilityα wt

[i]

add xt
[i] to χ t

return χ t

Each particle is a hypothesis
of what the state is at time t

Sample from the state
transition distribution

Weight is probability of
measurement for particle

Resample by weight}

Measurement Errors
• Position tracking usually uses wheel encoders to

estimate motion

• Unreliable in rescue robots

• We use lasers and RGB-D cameras

• Estimate motion from difference in successive
scans

Simultaneous Localisation
and Mapping (SLAM)

• Depth sensors also give
distance to objects

• Similar estimation methods
can be used to update map

Loop Closure
(Full SLAM)

• Position tracking alone will accumulate errors

• If the robot recognise a landmark that it has seen
before

• it can correct drift by updating estimate based on
measurement of landmark

• Error correction is back-propagated

Probabilistic Robotics
• Position tracking, mapping, localisation

• How confident are we that a robot arm has gripped an object?

• Is what I’m seeing really a ball or is it a cylinder, end-on?

• Is the ground ahead a flat, traversable surface or is it the
surface of a deep lake?

• If I drive into that obstacle, what are the chances that it’s a
bush that I can go over or it’s a boulder that I’ll crash into?

• How confident is my autonomous car in detecting pedestrians?

