
Aims

This exercise aims to get you to:

 Analyze data using Spark shell
 Monitor Spark tasks using Web UI

Background

Spark is already installed on the virtual machine image. Please follow the

instructions to do the installation and configuration of Spark in the specified
folder.

The detailed Spark programming guide is available at:

http://spark.apache.org/docs/latest/programming-guide.html

The transformation and action functions examples are available at:

http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html

A tutorial of Scala is available at:

http://docs.scala-
lang.org/tutorials/?_ga=1.99469143.850382266.1473265612

The answers to the questions are given at the end of this file. Please try to
answer all questions by yourself utilizing the above documents, and then

check your results with the answers provided.

Install Spark

1. Install openjdk 8

The installation of spark-2.2.0 requires openjdk 8, which is not installed in

the virtual machine. You can install it by:

$ sudo apt-get install openjdk-8-jdk

If the command cannot be successfully completed, you need to add the

openjdk 8 source, and then finish the installation:

$ sudo add-apt-repository ppa:openjdk-r/ppa

$ sudo apt-get update

$ sudo apt-get install openjdk-8-jdk

This may take several minutes depending on the network.

http://spark.apache.org/docs/latest/programming-guide.html
http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html
http://docs.scala-lang.org/tutorials/?_ga=1.99469143.850382266.1473265612
http://docs.scala-lang.org/tutorials/?_ga=1.99469143.850382266.1473265612

You also need to update JAVA_HOME. In ~/.bashrc, edit:

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

2. Create a working directory for Spark

$ mkdir ~/workdir

Then get into the directory:

$ cd ~/workdir

Download the Spark package by the command:

$ wget https://d3kbcqa49mib13.cloudfront.net/spark-2.2.0-bin-

hadoop2.7.tgz

Then unpack the package:

$ tar xvf spark-2.2.0-bin-hadoop2.7.tgz

$ mv spark-2.2.0-bin-hadoop2.7 spark

Now you have Spark installed under ~/workdir/spark. We need to configure
this folder as the working directory of Spark.

Open the file ~/.bashrc and add the following lines to the end of this file:

export SPARK_HOME=/home/comp9313/workdir/spark

export PATH=$SPARK_HOME/bin:$PATH

Save the file, and then run the following command to take these
configurations into effect:

$ source ~/.bashrc

Next, start HDFS by:

$ start-dfs.sh

Use the following command for opening Spark shell:

$ spark-shell

Interactive Analysis with the Spark Shell

1. Load and inspect data from a text file:

1. Create an RDD from local files using textFile()

$ scala> val textFile =

sc.textFile("file:///home/comp9313/workdir/spark/README.md")

Spark’s primary abstraction is a distributed collection of items called a

Resilient Distributed Dataset (RDD). RDDs can be created from Hadoop
InputFormats (such as HDFS files) or by transforming other RDDs. This

command makes a new RDD from the text of the README file in the

Spark source directory.

You can apply the RDD transformation and action functions on “textFile”.

2. Count the number of items in an RDD (count() is an action)

Definition: def count(): Long

$ scala> textFile.count()

You should see results: “res0: Long = 104”

3. Get the first item in an RDD

Definition: def first(): T

$ scala> textFile.first()

You should see results: “res1: String = # Apache Spark”

4. Get lines containing “Spark” using the function filter()

Definition: def filter(f: T => Boolean): RDD[T]

$ scala> val linesWithSpark = textFile.filter(line =>

line.contains("Spark"))

You can also use underscore in the argument, that is,
filter(_.contains(“Spark”)). Try to count the items in linesWithSpark.

5. Use the function collect() to see the contents of linesWithSpark

Definition: def collect(): Array[T]

$ scala> linesWithSpark.collect()

6. Print all the items in linesWithSpark

Definition: def foreach(f: T => Unit)

$ scala> linesWithSpark.foreach(println)

println() is a function, and it is used as an argument in function foreach().

7. Use function map() to map each line to the number of words contained in
it

Definition: def map[U: ClassTag](f: T => U): RDD[U]

$ scala> val lineNumOfWords = textFile.map(line => line.split("

").size)

The argument of map() is an anonymous function, which takes a line as the

input, and returns the number of words (separated by space). Check the
contents of lineNumOfWords.

8. Find the largest number of words contained in a line using reduce()

Definition: def reduce(f: (T, T) => T): T

$ scala> lineNumOfWords.reduce((a, b) => if (a > b) a else b)

You should see the result is 22. The reduce function takes an anonymous

function as an argument, which takes two arguments and returns the larger
one.

You can also call functions declared elsewhere. For example, you can use

Math.max() function to make this code easier to understand:

$ scala> import java.lang.Math

$ scala> lineNumOfWords.reduce((a, b) => Math.max(a, b))

9. Convert RDD textFile to an array of words using flatMap()

Definition: def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]

$ scala> val words = textFile.flatMap(_.split(“ “))

This will split each line to a list of words, and store all of them in one array.
You can compare the result obtained by flatMap() with that obtained by

map(). What are the differences?

$ scala> val words2 = textFile.map(_.split(“ “))

10. Count the distinct words in textFile using distinct()

Definition: def distinct(): RDD[T]

$ scala> words.distinct().count()

Compare the results with words.count(). You can ignore “()” if there is no

argument, that is, words.distinct.count.

11. (Question) Find the longest line together with the length in textFile.

Hint: first map a line to a pair of (line, length), and then use reduce() to find

the longest line. To access the second field of an argument x, you can use

x._2.

12. (Question) Print the lines containing “Spark” with line numbers (starting

from 0). Each line is printed in format of:

Line Number in textFile: the contents of the line

Hint: Use function zipWithIndex().

Definition: def zipWithIndex(): RDD[(T, Long)]

Zip the elements of the RDD with its element indexes. The indexes start

from 0.

2. More operations on pair RDD:

1. Download the data set auctiondata.csv from the course webpage.

Define the mapping for the input variables. They are used to refer to

different fields of the data set.

$ scala> val aucid = 0

$ scala> val bid = 1

$ scala> val bidtime = 2

$ scala> val bidder = 3

$ scala> val bidderrate = 4

$ scala> val openbid = 5

$ scala> val price = 6

$ scala> val itemtype = 7

$ scala> val dtl = 8

2. Load data into Spark

$ scala> val auctionRDD =

sc.textFile("file:///home/comp9313/auctiondata.csv").map(_.split(","))

In auctionRDD, each item is an array containing 9 fields, and you can use

the defined variables to access each field.

3. Count the total number of item types that were auctioned.

$ scala> auctionRDD.map(_(itemtype)).distinct.count,

or

$ scala> auctionRDD.map(x => x(itemtype)).distinct.count

Each item in auctionRDD is an array of String objects. x(itemtype) is

equivalent to x(7), and it is used to get the 8th object in the array. You can
also use x._7 to do the same work.

4. (Question) What is the total number of bids per item type? The output is a
list of key-value pairs <item type, number of bids>.

Hint: First create a pair RDD by mapping each record to a pair of (item type,
1), and then use reduceByKey() to do the aggregation for each item type

Definition: def reduceByKey(func: (V, V) => V): RDD[(K, V)]

5. (Question) Across all auctioned items, what is the maximum number of

bids?

Hint: First use reduceByKey() to count the number of bids for each

auctioned item, and then find the maximum number using reduce()

6. (Question) Across all auctioned items, what are the top-5 items that have

the most number of bids?

Hint: First use reduceByKey() to count the number of bids for each

auctioned item, and then use sortByKey(false) to sort the key-value pairs in
descending order. Note that sortByKey() works on keys, not values, and

thus you need to swap the key and value. You can do this by “map(x =>

(x._2, x._1))” or “map(x => x.swap)”. Finally (use take() to get the top-5
results, and swap the key and value back.

Definition: def sortByKey(ascending: Boolean = true, numPartitions: Int =

self.partitions.size): RDD[P]

3. Do word count in Spark shell

Start HDFS and YARN.

Get the file “pg100.txt”:

$ wget http://www.gutenberg.org/cache/epub/100/pg100.txt

Put the file to HDFS

$ hdfs dfs –put pg100.txt

Load the file into Spark from HDFS, and use the functions map(), flatMap(),
reduceByKey() to do word count (split the documents by the space

character). Finally, store the results in HDFS using saveAsTextFile() and

check the output.

RDD partitions: In the function reduceByKey(), set the number of tasks to 3,

and check the results again (each task will be processed by one reducer, and

thus three output files) .

Spark Web UI

Browse the web interface for the information of Spark Jobs, storage, etc. at:

http://localhost:4040. You will see:

http://www.gutenberg.org/cache/epub/100/pg100.txt
http://localhost:4040/

You can click each task to see more details of the execution.

Answers:

Note that for all answers you can define some intermediate variables to
make the command more clear.

Interactive Analysis with the Spark Shell

1.11. $ scala> textFile.map(line => (line, line.length)).reduce((a, b)
=> if(a._2 > b._2) a else b)

Result:

1.12. $ scala> textFile.zipWithIndex().filter(a =>
a._1.contains(“Spark”)).foreach(a => println(a._2.toString() + “: “ +

a._1)

2.4. $ scala>
auctionRDD.map(x=>(x(itemtype),1)).reduceByKey(_+_).collect()

Or $ scala> auctionRDD.map(x=>(x(itemtype),1)).reduceByKey((a, b) =>

a + b).collect()

Result:

2.5. $ scala>
auctionRDD.map(x=>(x(aucid),1)).reduceByKey(_+_).reduce((a, b) =>

if(a._2 > b._2) a else b)._2

Result: 75

2.6. $ scala> auctionRDD.map(x=>(x(aucid),1)).reduceByKey(_+_).map(x =>
(x._2, x._1)).sortByKey(false).take(5).map(x => (x._2, x._1))

or

$ scala>

auctionRDD.map(x=>(x(aucid),1)).reduceByKey(_+_).map(_.swap).sortByKe

y(false).take(5).map(_.swap)

Result:

3. $ scala> val textFile = sc.textFile("pg100.txt")

$ scala> textFile.flatMap(line => line.split(" ")).map(word => (word,

1)).reduceByKey((a, b) => a + b).saveAsTextFile(“output”)

$ scala> textFile.flatMap(line => line.split(" ")).map(word => (word,

1)).reduceByKey((a, b) => a + b, 3).saveAsTextFile(“output”)

