Exercise sheet 7 - Solutions and Hints COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2017

Exercise 1. A Boolean formula in Conjunctive Normal Form ($C N F$) is a conjunction (AND) of disjunctions (OR) of literals (a Boolean variable or its negation). A HORN formula is a CNF formula where each clause contains at most one positive literal. For a CNF formula F and an assignment $\tau: S \rightarrow\{0,1\}$ to a subset S of its variables, the formula $F[\tau]$ is obtained from F by removing each clause that contains a literal that evaluates to 1 under S, and removing all literals that evaluate to 0 from the remaining clauses.

```
HORN-Backdoor Detection
    Input: \(\quad\) A CNF formula \(F\) and an integer \(k\).
    Parameter: \(k\)
    Question: \(\quad\) Is there a subset \(S\) of the variables of \(F\) with \(|S| \leq k\) such that for each assignment \(\tau: S \rightarrow\{0,1\}\),
    the formula \(F[\tau]\) is a HORN formula?
```

Example: $(\neg a \vee b \vee c) \wedge(b \vee \neg c \vee \neg d) \wedge(a \vee b \vee \neg e) \wedge(\neg b \vee c \vee \neg e)$ with $k=1$ is a YES-instance, certified by $S=\{b\}$.

- Show that HORN-Backdoor Detection is FPT using the fact that Vertex Cover is FPT.

Hint.

- Show the following: if two distinct positive literals occur in a same clause, then a HORN-backdoor must contain at least one of the corresponding variables.
- Construct a parameterized reduction to Vertex Cover based on these pairwise conflicts.

Exercise 2. Show that Weighted Circuit Satisfiability $\in X P$.

Hint.

- There are n^{k} assignments of weight k, where n is the number of input gates.

Exercise 3. Recall that a k-coloring of a graph $G=(V, E)$ is a function $f: V \rightarrow\{1,2, \ldots, k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

```
Multicolor Clique
    Input: \(\quad\) A graph \(G=(V, E)\), an integer \(k\), and a \(k\)-coloring of \(G\)
    Parameter: \(k\)
    Question: \(\quad\) Does \(G\) have a clique of size \(k\) ?
```

- Show that Multicolor Clique is W[1]-hard.

Solution. The proof is by a parameterized reduction from Clique.
Construction. Let $(G=(V, E), k)$ be an instance for Clique. We construct an instance $\left(G^{\prime}=\left(V^{\prime}, E^{\prime}\right), k^{\prime}, f\right)$ for Multicolor Clique as follows. For each $v \in V$, create k vertices $v(1), \ldots, v(k)$ and add them to V^{\prime}. For every pair $u(i), v(j) \in V^{\prime}$ with $i \neq j$, add $u(i) v(j)$ to E^{\prime} if and only if $u v \in E$. Set $k^{\prime}:=k$. Set $f(v(i))=i$ for each $v \in V$ and $i \in\{1, \ldots, k\}$.

Equivalence. G has a clique of size k if and only if G^{\prime} has a clique of size k.
(\Rightarrow) : Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$ be a clique in G. Then $S^{\prime}=\left\{s_{1}(1), s_{2}(2), \ldots, s_{k}(k)\right\}$ is a clique in G^{\prime} since $s_{i} s_{j} \in E$ implies $s_{i}(i) s_{j}(j) \in E^{\prime}$ in our construction.
(\Leftarrow) : Let S^{\prime} be a clique of size k in G^{\prime}. Since for each $i \in\{1, \ldots, k\},\left\{v_{i}: v \in V\right\}$ is an independent set in G^{\prime}, S^{\prime} contains exactly one vertex from each color class of f. Denote $S^{\prime}=\left\{s_{1}^{\prime}(1), \ldots, s_{k}^{\prime}(k)\right\}$. Then, $S=\left\{s_{1}, \ldots, s_{k}\right\}$ is a clique in G.
Parameter. $k^{\prime} \leq k$.
Running time. The construction can clearly be done in FPT time, and even in polynomial time.
Exercise 4. A set system \mathcal{S} is a pair (V, H), where V is a finite set of elements and H is a set of subsets of V. A set cover of a set system $\mathcal{S}=(V, H)$ is a subset X of H such that each element of V is contained in at least one of the sets in X, i.e., $\bigcup_{Y \in X} Y=V$.

```
Set Cover
    Input: A set system S}=(V,H)\mathrm{ and an integer k
    Parameter: k
    Question: Does S have a set cover of cardinality at most k?
```


- Show that Set Cover is W[2]-hard.

Hint. Reduce from Dominating Set:

- add an element for each vertex and
- add a set for each vertex, containing all the vertices in its closed neighborhood.

Exercise 5. A hitting set of a set system $\mathcal{S}=(V, H)$ is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

Hitting Set	
Input:	A set system $\mathcal{S}=(V, H)$ and an integer k
Parameter:	k
Question:	Does \mathcal{S} have a hitting set of size at most $k ?$

- Show that Hitting Set is W[2]-hard.

Solution sketch. Reduce from Set Cover. Let $(\mathcal{S}=(V, H), k)$ be an instance for Set Cover. Construct an instance $\left(\mathcal{S}^{\prime}=\left(V^{\prime}, H^{\prime}\right), k\right)$ for Hitting Set:

- $V^{\prime}:=H$
- $H^{\prime}:=\{\{h \in H: v \in h\}: v \in V\}$

