Exercise 1. A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction (AND) of disjunctions (OR) of literals (a Boolean variable or its negation). A HORN formula is a CNF formula where each clause contains at most one positive literal. For a CNF formula F and an assignment $\tau : S \to \{0, 1\}$ to a subset S of its variables, the formula $F[\tau]$ is obtained from F by removing each clause that contains a literal that evaluates to 1 under S, and removing all literals that evaluate to 0 from the remaining clauses.

HORN-Backdoor Detection

Input: A CNF formula F and an integer k.
Parameter: k
Question: Is there a subset S of the variables of F with $|S| \leq k$ such that for each assignment $\tau : S \to \{0, 1\}$, the formula $F[\tau]$ is a HORN formula?

Example: $(\neg a \lor b \lor c) \land (b \lor \neg c \lor \neg d) \land (a \lor b \lor \neg c) \land (\neg b \lor c \lor \neg c)$ with $k = 1$ is a Yes-instance, certified by $S = \{b\}$.

• Show that HORN-Backdoor Detection is FPT using the fact that Vertex Cover is FPT.

Hint.

• Show the following: if two distinct positive literals occur in a same clause, then a HORN-backdoor must contain at least one of the corresponding variables.

• Construct a parameterized reduction to Vertex Cover based on these pairwise conflicts.

Exercise 2. Show that Weighted Circuit Satisfiability $\in NP$.

Hint.

• There are n^k assignments of weight k, where n is the number of input gates.

Exercise 3. Recall that a k-coloring of a graph $G = (V, E)$ is a function $f : V \to \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Multicolor Clique

Input: A graph $G = (V, E)$, an integer k, and a k-coloring of G
Parameter: k
Question: Does G have a clique of size k?

• Show that Multicolor Clique is W[1]-hard.

Solution. The proof is by a parameterized reduction from CLIQUE.

Construction. Let $(G = (V, E), k)$ be an instance for CLIQUE. We construct an instance $(G' = (V', E'), k', f)$ for Multicolor Clique as follows. For each $v \in V$, create k vertices $v(1), \ldots, v(k)$ and add them to V'. For every pair $u(i), v(j) \in V'$ with $i \neq j$, add $u(i)v(j)$ to E' if and only if $uv \in E$. Set $k' := k$. Set $f(v(i)) = i$ for each $v \in V$ and $i \in \{1, \ldots, k\}$.

1
Equivalence. \(G \) has a clique of size \(k \) if and only if \(G' \) has a clique of size \(k \).

\(\Rightarrow \): Let \(S = \{s_1, \ldots, s_k\} \) be a clique in \(G \). Then \(S' = \{s_1(1), s_2(2), \ldots, s_k(k)\} \) is a clique in \(G' \) since \(s_i s_j \in E \) implies \(s_i(1)s_j(1) \in E' \) in our construction.

\(\Leftarrow \): Let \(S' \) be a clique of size \(k \) in \(G' \). Since for each \(i \in \{1, \ldots, k\} \), \(\{v_i : v \in V\} \) is an independent set in \(G' \), \(S' \) contains exactly one vertex from each color class of \(f \). Denote \(S' = \{s'_1(1), \ldots, s'_k(k)\} \). Then, \(S = \{s_1, \ldots, s_k\} \) is a clique in \(G \).

Parameter. \(k' \leq k \).

Running time. The construction can clearly be done in FPT time, and even in polynomial time.

Exercise 4. A set system \(S \) is a pair \((V, H)\), where \(V \) is a finite set of elements and \(H \) is a set of subsets of \(V \). A set cover of a set system \(S = (V, H) \) is a subset \(X \) of \(H \) such that each element of \(V \) is contained in at least one of the sets in \(X \), i.e., \(\bigcup_{Y \in X} Y = V \).

Set Cover

- **Input:** A set system \(S = (V, H) \) and an integer \(k \)
- **Parameter:** \(k \)
- **Question:** Does \(S \) have a set cover of cardinality at most \(k \)?

- Show that Set Cover is W[2]-hard.

Hint. Reduce from Dominating Set:

- add an element for each vertex and
- add a set for each vertex, containing all the vertices in its closed neighborhood.

Exercise 5. A hitting set of a set system \(S = (V, H) \) is a subset \(X \) of \(V \) such that \(X \) contains at least one element of each set in \(H \), i.e., \(X \cap Y \neq \emptyset \) for each \(Y \in H \).

Hitting Set

- **Input:** A set system \(S = (V, H) \) and an integer \(k \)
- **Parameter:** \(k \)
- **Question:** Does \(S \) have a hitting set of size at most \(k \)?

- Show that Hitting Set is W[2]-hard.

Solution sketch. Reduce from Set Cover. Let \((S = (V, H), k)\) be an instance for Set Cover. Construct an instance \((S' = (V', H'), k)\) for Hitting Set:

- \(V' := H \)
- \(H' := \{\{h \in H : v \in h\} : v \in V\} \)