COMP9334 Capacity Planning for Computer Systems and Networks

Week 9: Mean Value Analysis

Classification of queues

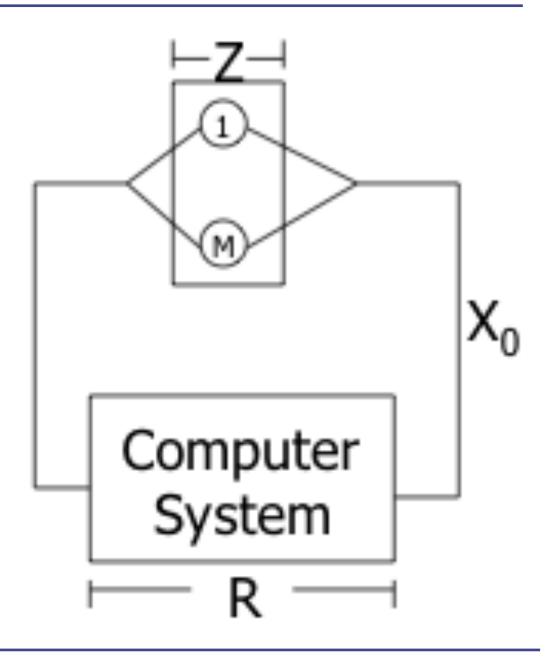
- Single server queue versus a network of queues
- Open queueing networks versus closed queueing networks

Weeks 3 & 5: Open queues

- Single-server M/M/1 Arrivals Exponential inter-arrivals (λ) Exponential service time (μ)
 - Also M/G/1, G/G/1, M/G/1 with priority
 - Characteristics of open queueing networks
 - Have external arrivals and departures
 - Customers will finally depart from the system
 - Workload intensity specified by inter-arrival and service time distributions

Weeks 2 & 4: Closed queueing networks

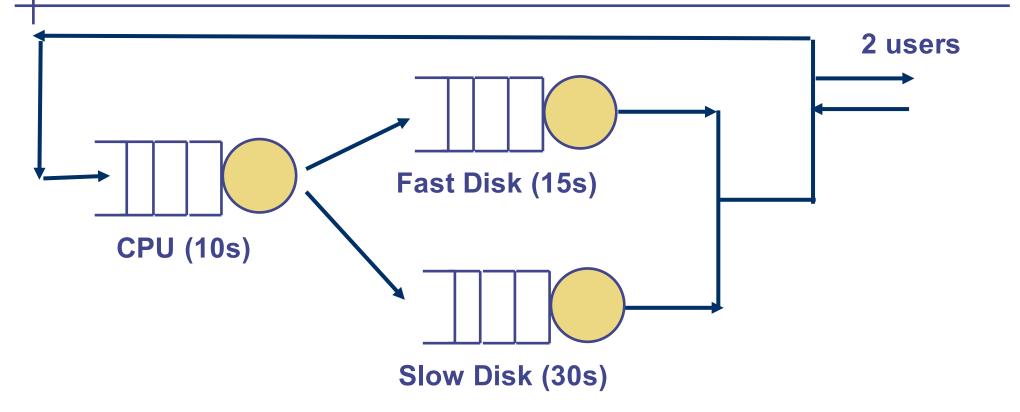
- Closed queueing networks
 - Have no external arrivals nor departures
 - Can be classified into Batch Systems and Interactive Systems
- Examples of interactive systems
 - Interactive terminals
 - Machine reliability analysis (Week 4) can be modelled as an interactive system



This lecture

- Methods to *efficiently* analyse a closed queueing network
- Motivation
 - You have learnt how to analyse a closed queueing network in Week 4 using Markov chain
 - However, the method can only be used for a small number of users
- This week we will study a method that can be used for a large number of users
- Let us begin by revisiting the database server example in Week 4

DB server example

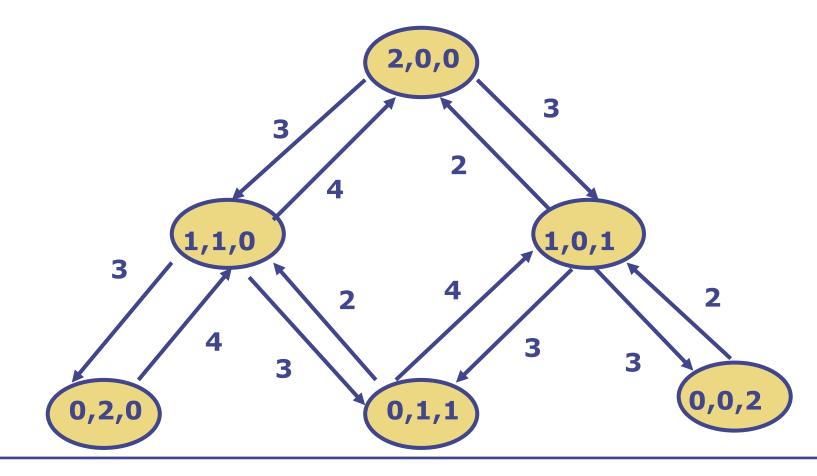


- 1 CPU, 1 fast disk, 1 slow disk.
- Peak demand = 2 users in the system all the time.
- Transactions alternate between CPU and disks.
- The transactions will equally likely find files on either disk
- Service time are exponentially distributed with mean showed in parentheses.

Markov chain solution to the DB server problem

- In Week 4, we used Markov chain to solve this problem
- We use a 3-tuple (X,Y,Z) as the state
 - X is # users at CPU
 - Y is # users at fast disk
 - Z is # users at slow disk
- Examples
 - (2,0,0): both users at CPU
 - (1,0,1): one user at CPU and one user at slow disk
- Six possible states
 - (2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)

Markov model for the database server with 2 users



COMP9334

Solving the model

- Solve for the probability in each state P(2,0,0), P(1,1,0), etc.
 - There are 6 states so we need 6 equations
- After solving for P(2,0,0), P(1,1,0) etc. we can find
 - Utilisation
 - Throughput,
 - Response time,
 - Average number of users in each component etc.

What if we have 3 users instead?

- What if we have 3 users in the database example instead of only 2 users?
- We continue to use (X,Y,Z) as the state
 - X is the # users at CPU
 - Y is the # users at the fast disk
 - Z is the # users at the slow disk
- How many states will you need?
- We need 10 states:
 - (3,0,0),
 - (2,1,0),(2,0,1)
 - (1,2,0),(1,1,1),(1,0,2)
 - (0,3,0),(0,2,1),(0,1,2),(0,0,3)

What if there are *n* users?

• You can show that if there are *n* users in the database server, the number of states *m* required will be

$$\frac{(n+1)(n+2)}{2}$$

- For *n* = 100, *m* (= #states) ~ 50000
- You can automate the computational process but where is the computational bottleneck?
 - Solving a system of m linear equations in m unknowns has a complexity of O(m³)
- For our database server with *n* users, the computational complexity is about O(n⁶)

Weaknesses of Markov model

- The Markov model for a practical system will require many states due to
 - Large number of users
 - Large number of components
- Large # states
 - More transitions to identify
 - Though this can be automated
 - If you' ve m states, you need to solve a set of m equations. A larger set of equation to solve.
 - The complexity of solving a set of *m* linear equations in *m* unknowns is $O(m^3)$

Mean value analysis (MVA)

- An iterative method to find the
 - Utilisation
 - Mean throughput
 - Mean response time
 - Mean number of users
- The complexity is approximately *O(nk)* where
 - *n* is the number of users
 - *k* is the number of devices
- The complexity of MVA makes it a very practical method

MVA - overview

- MVA analysis has been derived for
 - Closed model
 - Single-class
 - Multi-class
 - Open model
 - Mixed model with both open and closed queueing
- This lecture discusses MVA for single-class closed model

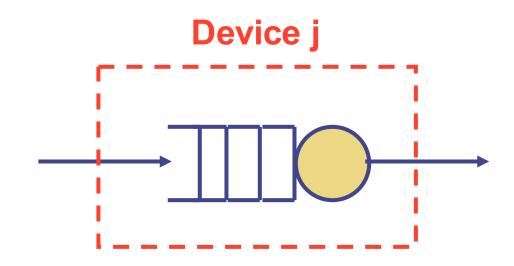
MVA for closed system

- Consider a closed queueing network with a single-class of customers
- You are given a system with *K* devices
- You are given that each customer
 - Visits device *j* on average *V(j)* times
 - Requires a mean service time of S(j) from device j
 - Note: The service time required is assumed to be exponentially distributed
- From the information given, we can deduce that the service demand D(j) for device j is V(j) S(j)
- How do we obtain *D*(*j*) for a practical system?

Key idea behind MVA

- Key idea behind MVA is *iteration*
 - If you know the solution to the problem when there are n customers in the system, you can find the solution when there are (n+1) customers

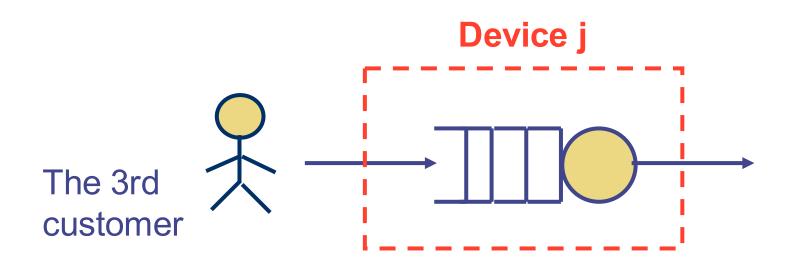
Let us consider a simple example to motivate the iteration in MVA. Consider single device j of a queueing network.



Assume that we know when there are 2 customers in the system, the average number of users in device j is 0.6 (say).

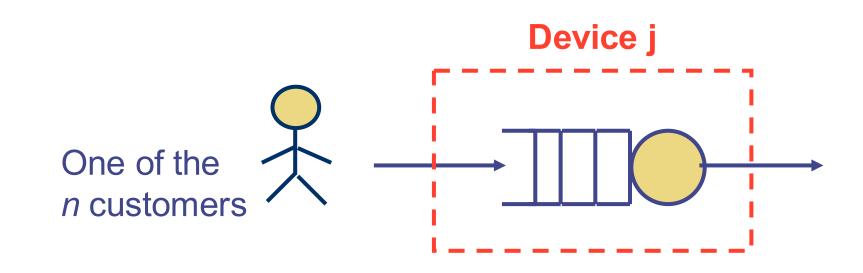
What happens when there are 3 customers?

What happens when there are 3 customers?



- Let us assume the 3rd customer is arriving at device *j*.
- Where will the other 2 customers be? We cannot tell exactly but we know that there is on average of 0.6 customers in device *j* when there are 2 customers.
- The 3rd customer will see on average 0.6 customers when it arrives at device *j*.

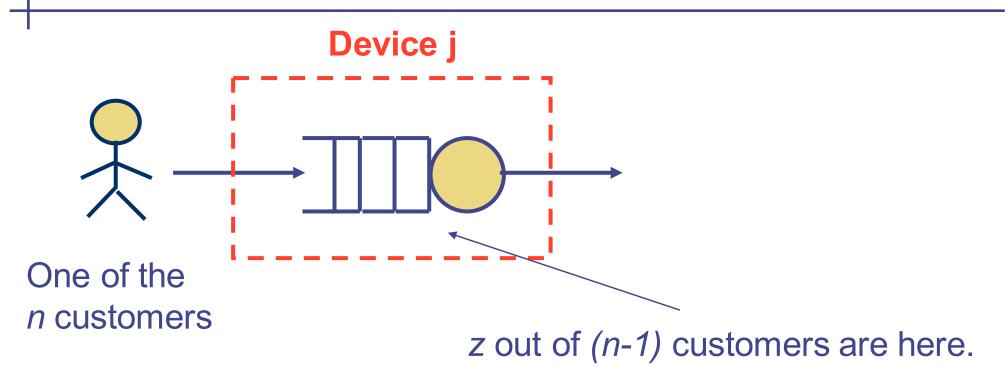
When there are n customers ...



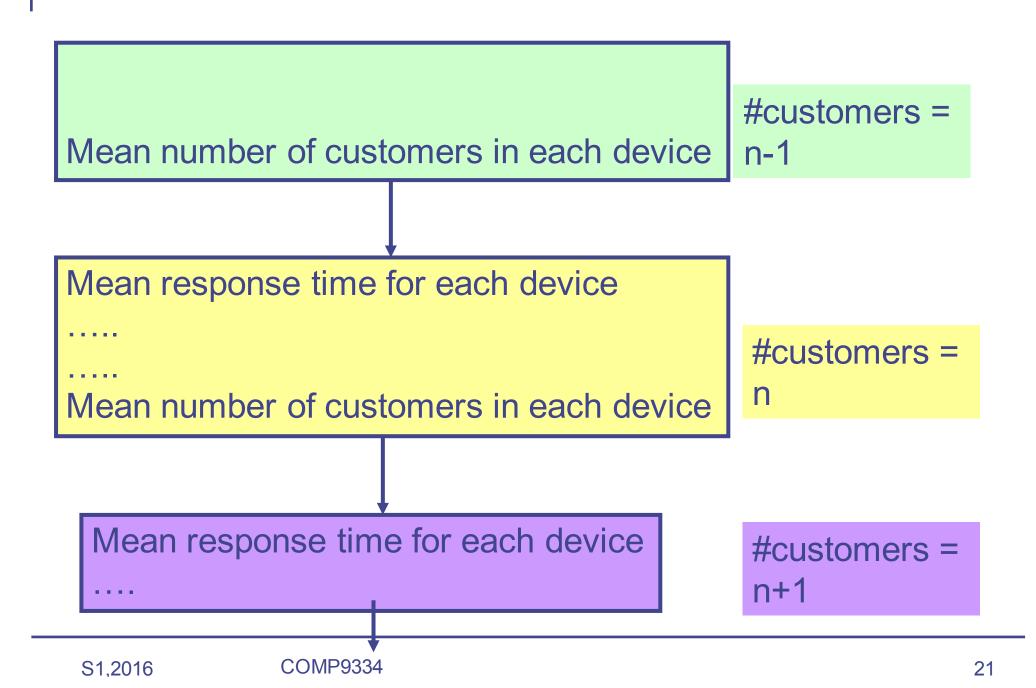
Arrival Theorem

- If there are (n-1) customers in the system, the mean number of customers in device j is z customers,
- Then, when there are *n* customers, each customer arriving at device *j* will see on average *z* customers ahead of itself in device *j*.

How can Arrival Theorem help?



Let S(j) = mean service time at device j. When there are n customers, The mean waiting time at device j = z S(j)The mean response time at device j = (z+1) S(j)

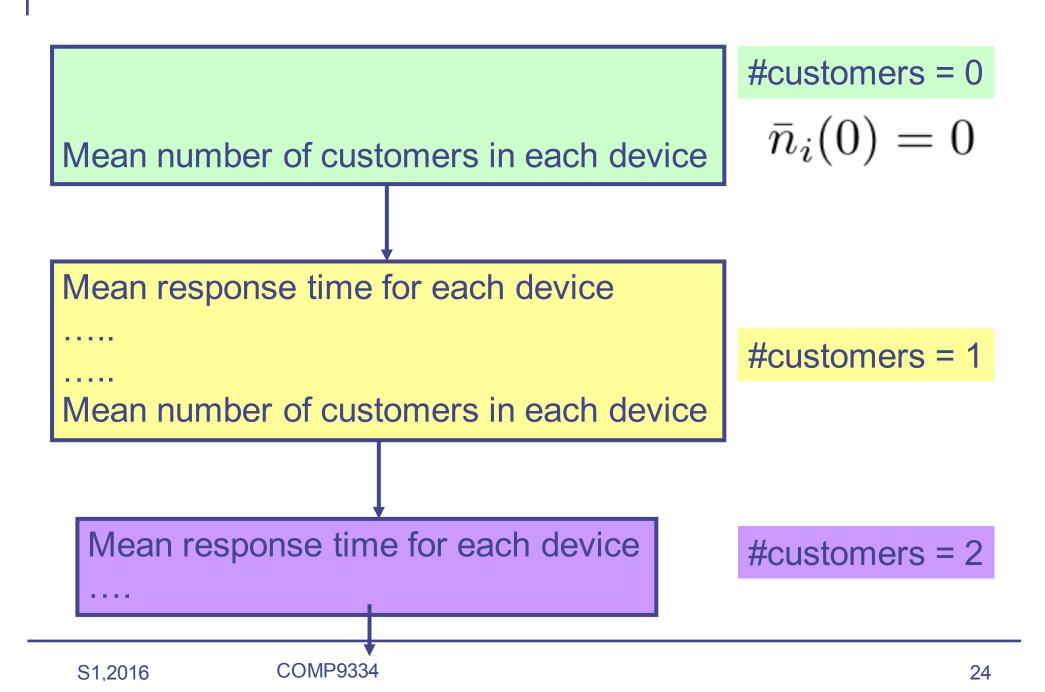


Note "(n)" means there are n customers in the system

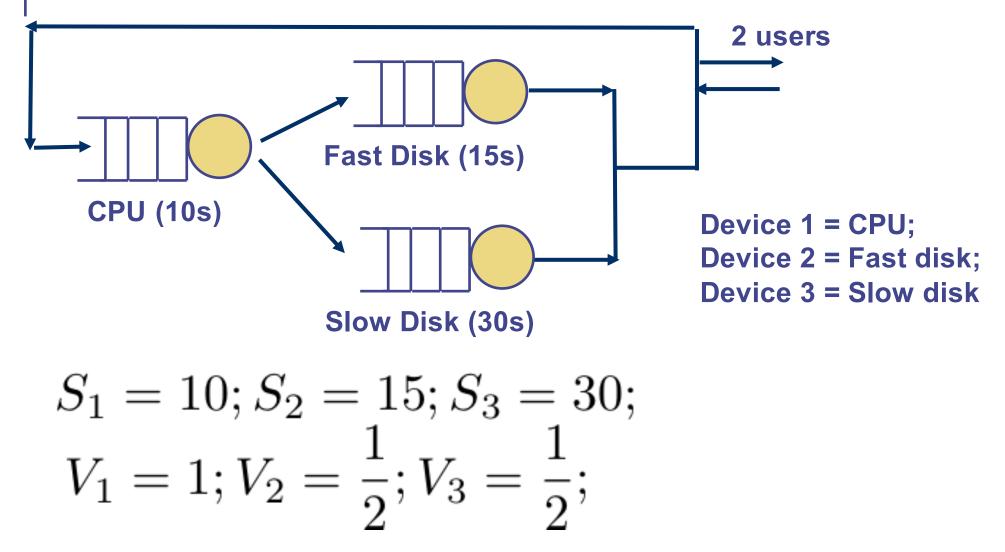
$$\bar{n}_i(n) = \text{Mean } \# \text{ of customers in device i}$$

 $R_i(n) = \text{Mean response time in device i}$
 $R_0(n) = \text{Mean response time of the system}$
 $X_i(n) = \text{Throughput of device i}$
 $X_0(n) = \text{Throughput of the system}$

Mean response time of each device
$$R_i(n)$$
 $R_0(n) = \sum_{i=1}^{K} V_i \times R_i(n)$ System response time $X_0(n) = \frac{n}{R_0(n)}$ Throughput of the system $X_i(n) = V_i \times X_0(n)$ Throughput of each device $X_i(n)$ $\bar{n}_i(n) = R_i(n) \times X_i(n)$ Mean # customers in each device



Let us apply MVA to the database example



- Determine the performance when there are 2 users in the system
- And how about 3 users?

Limitation of MVA

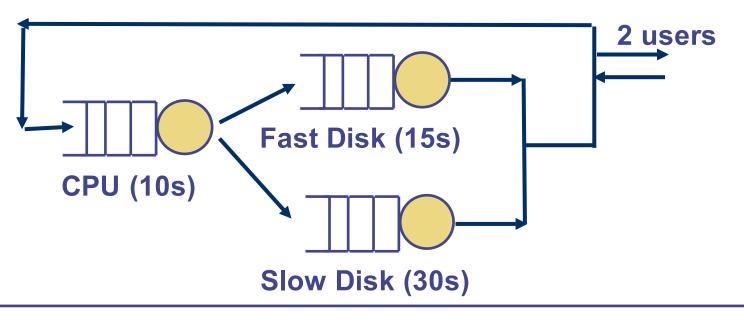
- MVA allows you to find the mean value of throughput, response time etc.
- However, if you are interested to find the probability that the system is in a certain state. MVA cannot give you the answer. You will need to resort to Markov model.

Extensions of MVA

- Closed queueing networks with multiple classes of customers
 - Example: Database servers with 2 classes of customers
 - One class of customers require mean service time of 0.02s, 0.03s and 0.05s from the CPU, fast and slow disk
 - Another class of customers require mean service time of 0.04s, 0.01s and 0.1s from the CPU, fast and slow disk
- Open queueing networks
- Mixed queueing networks

Assumptions behind MVA

- The service time is exponentially distributed
- The service time required at each component is independent
 - For example, MVA assumes that the service time required at CPU is independent of the service time at the disk

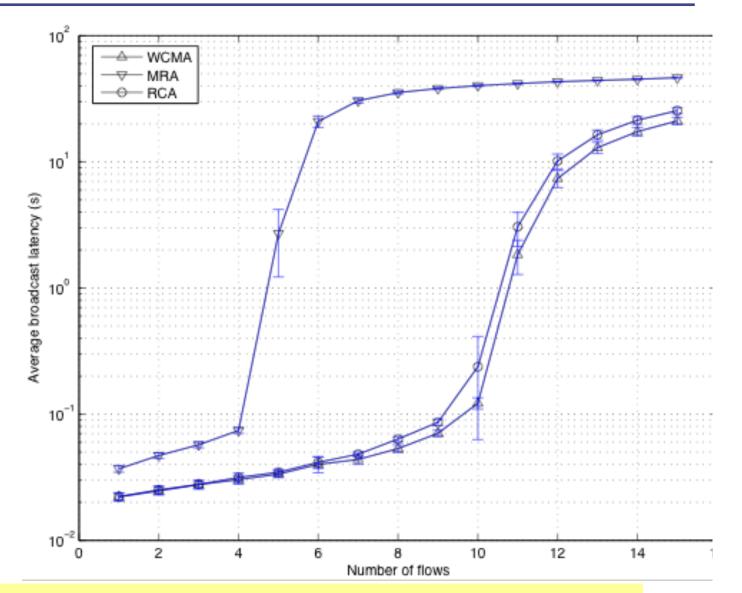


Solution to network of queues

- You have seen two possible methods to solve a network of queues
 - Analytical solution
 - Simulation
- For closed queueing networks with exponentially distributed service time
 - Markov chain
 - MVA
- Commercial simulation tools can deal with hundred of nodes

Multicast in wireless mesh networks

- In my research on designing multicast protocol for wireless mesh networks, we use simulation package Qualnet to investigate which of the multicast protocols that we have designed is better
- The network has 400 wireless mesh routers (= 400 queues)



 You can find out more on my research from my web site: <u>http://www.cse.unsw.edu.au/~ctchou/</u>

Analytical solution versus simulation

- Analytical solution
 - Limited to specific cases
 - E.g. Exponential assumptions
 - Efficient computation algorithm exists for certain cases
 - MVA for closed queueing networks with exponential service time
- Simulation
 - Can apply to general settings
 - Difference classes of traffic, protocols etc.
 - Can apply to reasonably large networks too

References

- The primary reference for MVA for closed queueing networks with one class of customer is:
 - Chapter 12, Menasce et al., "Performance by design"
- An alternative reference for MVA is Chapter 6 of Edward Lazowska et al, Quantitative System Performance, Prentice Hall, 1984. (Now out of print but can be download from <u>http://www.cs.washington.edu/homes/lazowska/qsp/</u>)
 - Note that Chapter 6 has a wider coverage. It talks about open queueing network as well as approximation method too.
- For a formal mathematical proof of Arrival Theorem, see Bertsekas and Gallager, "Data networks", Section 3.8.3