
COMP1511 - Programming 
Fundamentals

Term 1, 2020 - Lecture 18



What did we cover yesterday?
Exam

● Exam format
● Difficulty of Questions
● How to approach it

Course Recap Part 1

● The earlier parts of the course



What are we covering today?
Course Recap Part 2

● The non-technical part of the course
● The second half of the course (all the spikey bits)



Programming is much more than just code
COMP1511 Programming Skills Topics

● History of Computing
● Problem Solving
● Code Style
● Code Reviews
● Debugging
● Theory of a Computer
● Professionalism



Problem Solving



Problem Solving
Approach Problems with a plan!

● Big problems are usually collections of small problems
● Find ways to break things down into parts
● Complete the ones you can do easily
● Test things in parts before moving on to other parts



Code Style
Half the code is for machines, the other half for humans

● Remember . . . readability == efficiency
● Also super important for working in teams
● It's much easier to isolate problems in code that you fully understand
● It's much easier to get help if someone can skim read your code and 

understand it
● It's much easier to modify code if it's written to a good style



Code Reviews
No one has to work without help

● If we read each other's code . . .
● We learn more
● We help each other
● We see new ways of approaching things
● We are able to teach (which is a great way to cement knowledge)



Debugging



Debugging
The removal of bugs (programming errors)

● Syntax errors are code language errors
● Logical errors are the code not doing what we intend

● The first step is always: Get more information!
● Once you know exactly what your program is doing around a bug, it's 

easier to fix it
● Separate things into their parts to isolate where an error is
● Always try to remember what your intentions are for your code rather 

than getting bogged down



Professionalism
There's so much more to computing than code

● What's the most important thing for a Software Professional?
● It's not coding!
● It's caring about what you do and the people around you!
● Even in terms of pure productivity, it's going to get more work done long 

term than being good at programming
● If you care about your work, you will be fulfilled by it
● If you care about your coworkers you'll teach and learn from them and 

you'll all grow into a great team



Break Time
A thought exercise . . . the future

● Why are you doing computer science (or related field)?
● Is there something you'd like to do with these skills?

○ Jobs?
○ Research?
○ Change the World?

● How do you want to use your time at UNSW to push yourself towards 
your goals?

● Note: You don't need all the answers yet, but it's useful to start 
thinking about these things!



Characters and Strings
Used to represent letters and words

● char is an 8 bit integer that allows us to encode characters
● Uses ASCII encoding (but we don't need to know ASCII to use them)

● Strings are arrays of characters
● The array is usually declared larger than it needs to be
● The word inside is ended by a Null Terminator '\0'
● Using C library functions can make working with strings easier



Characters and Strings in code

    // read user input
    char input[MAX_LENGTH];
    fgets(input, MAX_LENGTH, stdin);
    printf("%s\n", input);
    
    // print string vertically
    int i = 0;
    while (input[i] != '\0') {
        printf("%c\n", input[i]);
        i++;
    }



Structures
Custom built types made up of other types

● structs are declared before use
● They can contain any other types (including other structs and arrays)
● We use a . operator to access fields they contain
● If we have a pointer to a struct, we use -> to access fields



Structs in code
struct spaceship {
    char name[MAX_NAME_LENGTH];
    int engines;
    int wings;
};

int main (void) {
    struct spaceship xwing;
    strcpy(xwing.name, "Red 5");
    xwing.engines = 4;
    xwing.wings = 4;
    
    struct spaceship *myShip = &xwing;
    
    // my ship takes a hit
    myShip->engines--;
    myShip->wings--;
}



Memory
Our programs are stored in the computer's memory while they run

● All our code will be in memory
● All our variables also
● Variables declared inside a set of curly braces will only last until those 

braces close (what goes on inside curly braces stays inside curly braces)
● If we want some memory to last longer than the function, we allocate it
● malloc() and free() allow us to allocate and free memory
● sizeof provides an exact size in bytes so malloc knows how much we 

need



Memory code
struct spaceship {
    char name[MAX_NAME_LENGTH];
    int engines;
    int wings;
};

int main (void) {
    struct spaceship *myShip = malloc(sizeof (struct spaceship));
    strcpy(myShip->name, "Millennium Falcon");
    myShip->engines = 1;
    myShip->wings = 0;
    
    // Lost my ship in a Sabacc game, free its memory
    free(myShip);
}



Linked Lists
Structs for nodes that contain pointers to the same struct

● Nodes can point to each other in a chain to form a linked list
● Convenient because:

○ They're not a fixed size (can grow or shrink)
○ Elements can be inserted or removed easily anywhere in the list

● The nodes may be in separate parts of memory
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Linked Lists



Linked Lists in code
struct location {
    char name[MAX_NAME_LENGTH];
    struct location *next;
};

int main (void) {
    struct location *head = NULL;
    head = addNode("Tatooine", head);
    head = addNode("Yavin IV", head);
}

// Add a node to the start of a list and return the new head
struct location *addNode(char *name, struct location *list) {
    struct location *newNode = malloc(sizeof(struct location));
    strcpy(newNode->name, name);
    newNode->next = list;
    return newNode;
}



Complications in Pointers, Structs and Memory
What's a pointer?

● It is a number variable that stores a memory address
● Any changes made to pointers will only change where they're aiming

What does * do?

● It allows us to access the memory that the pointer aims at (like following 
the address to the actual location)

● This is called "dereferencing" (because the pointer is a reference to 
something)



Complications in Pointers, Structs and Memory
What about -> ?

● Specifically access a struct at the end of a pointer
● -> must point at one of the fields in the struct that the pointer aims at
● It will dereference the pointer AND access the field

Pointers to structs that contain pointers to other structs!

● We can follow chains of pointers like track->beat->note



Complicated Pointer Code

int main (void) {
    // create a list with two locations
    struct location *head = addNode("Dantooine", NULL);
    head = addNode("Alderaan", head);

    // create a pointer to the first location
    struct location *alderaan = head;
    
    // set head to a newly created location
    head = malloc((sizeof(struct location));

    // What has happened to the alderaan pointer now?
    // What has happened to the variable that the head and alderaan
    // both pointed at?
}



Pointer Arithmetic
A program's memory (not to scale)
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Pointer Arithmetic
A program's memory (not to scale)

Next

Alderaan
head

Next

Dantooine

NULL

struct location *alderaan = head
This line creates a new pointer that's a copy of the 
head pointer. It is given the same value as head, 
which means it's aimed at the same memory address

alderaan



Pointer Arithmetic
A program's memory (not to scale)
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head = malloc((sizeof(struct location));
This line allocates new memory and assigns the address of 
this new allocation to the head pointer.
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Keeping track of pointers
beat->head->next->next->note = ????

● This is code that might work in most Beats by CSE implementations

● Remember:
● Changing a pointer changes its value, a memory address
● Changing a pointer will change where it's aiming, nothing more!
● Once you use -> on a pointer, you're now looking at a struct field
● This means you are not changing that pointer, you have dereferenced it 

and accessed a field inside the struct



Abstract Data Types



Abstract Data Types
Separating Declared Functionality from the Implementation

● Functionality declared in a Header File
● Implementation in a C file
● This allows us to hide the Implementation
● It protects the raw data from incorrect access
● It also simplifies the interface when we just use provided functions



Abstract Data Types Header code

// ship type hides the struct that it is
// implemented as
typedef struct shipInternals *Ship;

// functions to create and destroy ships
Ship shipCreate(char* name);
void shipFree(Ship ship);

// set off on a voyage of discovery
Ship voyage(Ship ship, int years);



Abstract Data Types Implementation
// ship type hides the struct that it is implemented as
struct shipInternals {
    char name[MAX_NAME_LENGTH]; 
};

Ship shipCreate(char* name) {
    Ship newShip = malloc(sizeof (struct shipInternals));
    return newShip
}
void shipFree(Ship ship) {
    free(ship);
}
// set off on a voyage of discovery
Ship voyage(Ship ship, int years) {
    int discoveries = 0, yearsPast = 0;
    while(yearsPast < years) {
        discoveries++;
    }
}



Abstract Data Types Main

#include "ship.h"

int main (void) {
    Ship myShip = newShip("Enterprise");
    myShip = voyage(myShip, 5);
}

● Including the Header allows us access to the functions
● The main doesn't know how they're implemented
● We can just trust that the functions do what they say 



So, you're programming now . . .



So, you're programming now . . .
Where do we go from here?

● There's so much you can do with code now
● But there's also so much to learn
● Programming has more to offer than anyone can learn in a lifetime
● There's always something new you can discover
● It's up to you to decide what you want from it and how much of your life 

you want to commit to it
● Remember to care for yourselves and your work
● Enjoy yourselves, keep working as hard as you can and I hope to bask in 

your future glory



COMP1511

Good luck, have fun :)


