8. Parameterized intractability: the W-hierarchy

COMP6741: Parameterized and Exact Computation

Serge Gaspers1,2

1School of Computer Science and Engineering, UNSW Australia
2Optimisation Research Group, NICTA

Semester 2, 2015
1. Reminder: Polynomial Time Reductions and NP-completeness

2. Parameterized Complexity Theory
 - Parameterized reductions
 - Parameterized complexity classes

3. Case studies

4. Further Reading
Outline

1. Reminder: Polynomial Time Reductions and NP-completeness

2. Parameterized Complexity Theory
 - Parameterized reductions
 - Parameterized complexity classes

3. Case studies

4. Further Reading
Polynomial-time reduction

Definition 1

A polynomial-time reduction from a decision problem \(\Pi_1 \) to a decision problem \(\Pi_2 \) is a polynomial-time algorithm, which, for any instance of \(\Pi_1 \) produces an equivalent instance of \(\Pi_2 \).

If there exists a polynomial-time reduction from \(\Pi_1 \) to \(\Pi_2 \), we say that \(\Pi_1 \) is polynomial-time reducible to \(\Pi_2 \) and write \(\Pi_1 \leq_P \Pi_2 \).
New polynomial-time algorithms via reductions

Lemma 2

If Π_1, Π_2 are decision problems such that $\Pi_1 \leq_P \Pi_2$, then $\Pi_2 \in P$ implies $\Pi_1 \in P$.
NP-completeness

Definition 3 (NP-hard)

A decision problem Π is **NP-hard** if $\Pi' \leq_p \Pi$ for every $\Pi' \in \text{NP}$.

Definition 4 (NP-complete)

A decision problem Π is **NP-complete** (in NPC) if

1. $\Pi \in \text{NP}$, and
2. Π is NP-hard.
Lemma 5

If Π is a decision problem such that $\Pi' \leq_p \Pi$ for some NP-hard decision problem Π', then Π is NP-hard.

If, in addition, $\Pi \in \text{NP}$, then $\Pi \in \text{NPC}$.
Method to prove that a decision problem \(\Pi \) is NP-complete:

1. Prove \(\Pi \in \text{NP} \)
2. Prove \(\Pi \) is NP-hard.
 - Select a known NP-hard decision problem \(\Pi' \).
 - Describe an algorithm that transforms every instance \(I \) of \(\Pi' \) to an instance \(r(I) \) of \(\Pi \).
 - Prove that for each instance \(I \) of \(\Pi' \), we have that \(I \) is a Yes-instance of \(\Pi' \) \(\iff \) \(r(I) \) is a Yes-instance of \(\Pi \).
 - Show that the algorithm runs in polynomial time.
Outline

1. Reminder: Polynomial Time Reductions and NP-completeness

2. Parameterized Complexity Theory
 - Parameterized reductions
 - Parameterized complexity classes

3. Case studies

4. Further Reading
Main Parameterized Complexity Classes

n: instance size
k: parameter

\(P\): class of problems that can be solved in \(n^{O(1)}\) time
\(\text{FPT}\): class of parameterized problems that can be solved in \(f(k) \cdot n^{O(1)}\) time
\(W[\cdot]\): parameterized intractability classes
\(\text{XP}\): class of parameterized problems that can be solved in \(f(k) \cdot n^{g(k)}\) time
\(\text{“polynomial when } k \text{ is a constant”}\)

\(P \subseteq \text{FPT} \subseteq W[1] \subseteq W[2] \cdots \subseteq W[P] \subseteq \text{XP}\)

\textbf{Note:} We assume that \(f\) is \textit{computable} and \textit{non-decreasing}.
Polynomial-time reductions for parameterized problems?

A vertex cover in a graph $G = (V, E)$ is a subset of vertices $S \subseteq V$ such that every edge of G has an endpoint in S.

Vertex Cover
- **Input:** Graph G, integer k
- **Parameter:** k
- **Question:** Does G have a vertex cover of size k?

An independent set in a graph $G = (V, E)$ is a subset of vertices $S \subseteq V$ such that there is no edge $uv \in E$ with $u, v \in S$.

Independent Set
- **Input:** Graph G, integer k
- **Parameter:** k
- **Question:** Does G have an independent set of size k?
A vertex cover in a graph $G = (V, E)$ is a subset of vertices $S \subseteq V$ such that every edge of G has an endpoint in S.

Vertex Cover
- **Input:** Graph G, integer k
- **Parameter:** k
- **Question:** Does G have a vertex cover of size k?

An independent set in a graph $G = (V, E)$ is a subset of vertices $S \subseteq V$ such that there is no edge $uv \in E$ with $u, v \in S$.

Independent Set
- **Input:** Graph G, integer k
- **Parameter:** k
- **Question:** Does G have an independent set of size k?

- We know: **Independent Set** \leq_p **Vertex Cover**
- However: **Vertex Cover** \in **FPT** but **Independent Set** is not known to be in **FPT**
We will need another type of reductions

- Issue with polynomial-time reductions: parameter can change arbitrarily
We will need another type of reductions

- Issue with polynomial-time reductions: parameter can change arbitrarily
- We will want the reduction to produce an instance where the parameter is bounded by a function of the original instance
We will need another type of reductions

- Issue with polynomial-time reductions: parameter can change arbitrarily
- We will want the reduction to produce an instance where the parameter is bounded by a function of the original instance
- Also: we can allow the reduction to take FPT time instead of only polynomial time.
Outline

1. Reminder: Polynomial Time Reductions and NP-completeness

2. Parameterized Complexity Theory
 - Parameterized reductions
 - Parameterized complexity classes

3. Case studies

4. Further Reading
A **parameterized reduction** from a parameterized decision problem Π_1 to a parameterized decision problem Π_2 is an algorithm, which, for any instance I of Π_1 with parameter k produces an instance I' of Π_2 with parameter k' such that:

- I is a \texttt{Yes}-instance for Π_1 \iff I' is a \texttt{Yes}-instance for Π_2,
- there exists a computable function g such that $k' \leq g(k)$, and
- there exists a computable function f such that the running time of the algorithm is $f(k) \cdot |I|^{O(1)}$.

If there exists a parameterized reduction from Π_1 to Π_2, we write $\Pi_1 \leq_{\text{FPT}} \Pi_2$.

Note: We can assume that f and g are non-decreasing.
Lemma 7

If Π_1, Π_2 are parameterized decision problems such that $\Pi_1 \leq_{\text{FPT}} \Pi_2$, then $\Pi_2 \in \text{FPT}$ implies $\Pi_1 \in \text{FPT}$.

Proof.

Exercise.
A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction (AND) of disjunctions (OR) of literals (a Boolean variable or its negation).

A HORN formula is a CNF formula where each clause contains at most one positive literal.

For a CNF formula F and an assignment $\tau : S \rightarrow \{0, 1\}$ to a subset S of its variables, the formula $F[\tau]$ is obtained from F by removing each clause that contains a literal that evaluates to 1 under S, and removing all literals that evaluate to 0 from the remaining clauses.

HORN-Backdoor Detection

Input: A CNF formula F and an integer k.
Parameter: k
Question: Is there a subset S of the variables of F with $|S| \leq k$ such that for each assignment $\tau : S \rightarrow \{0, 1\}$, the formula $F[\tau]$ is a HORN formula?

Example: $(\neg a \lor b \lor c) \land (b \lor \neg c \lor \neg d) \land (a \lor b \lor \neg e) \land (\neg b \lor c \lor \neg e)$ with $k = 1$ is a Yes-instance, certified by $S = \{b\}$.

Show that HORN-Backdoor Detection is FPT using the fact that Vertex Cover is FPT.
Outline

1. Reminder: Polynomial Time Reductions and NP-completeness

2. Parameterized Complexity Theory
 - Parameterized reductions
 - Parameterized complexity classes

3. Case studies

4. Further Reading
A **Boolean circuit** is a directed acyclic graph with the nodes labeled as follows:

- every node of in-degree 0 is an **input node**,
- every node with in-degree 1 is a **negation node** (\neg), and
- every node with in-degree ≥ 2 is either an **AND-node** (\land) or an **OR-node** (\lor).

Moreover, exactly one node with out-degree 0 is also labeled the **output node**. The **depth** of the circuit is the maximum length of a directed path from an input node to the output node. The **weft** of the circuit is the maximum number of nodes with in-degree ≥ 3 on a directed path from an input node to the output node.
A depth-3, weft-1 Boolean circuit with inputs a, b, c, d, e.
Given an assignment of Boolean values to the input gates, the circuit determines Boolean values at each node in the obvious way. If the value of the output node is 1 for an input assignment, we say that this assignment satisfies the circuit. The weight of an assignment is its number of 1s.

Weighted Circuit Satisfiability (WCS)

Input: A Boolean circuit C, an integer k

Parameter: k

Question: Is there an assignment with weight k that satisfies C?

Exercise: Show that Weighted Circuit Satisfiability \in XP.
WCS for special circuits

Definition 9
The class of circuits $C_{t,d}$ contains the circuits with weft $\leq t$ and depth $\leq d$.

For any class of circuits C, we can define the following problem.

WCS[C]

Input: A Boolean circuit $C \in C$, an integer k

Parameter: k

Question: Is there an assignment with weight k that satisfies C?
Definition 10 (W-hierarchy)

Let $t \in \{1, 2, \ldots \}$. A parameterized problem Π is in the parameterized complexity class $W[t]$ if there exists a parameterized reduction from Π to $WCS[\mathcal{C}_{t,d}]$ for some constant $d \geq 1$.
Theorem 11

Independent Set \(\in W[1] \).

Theorem 12

Dominating Set \(\in W[2] \).

Recall: A **dominating set** of a graph \(G = (V, E) \) is a set of vertices \(S \subseteq V \) such that \(N_G[S] = V \).

<table>
<thead>
<tr>
<th>Dominating Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph (G = (V, E)) and an integer (k)</td>
</tr>
<tr>
<td>Parameter: (k)</td>
</tr>
<tr>
<td>Question: Does (G) have a dominating set of size at most (k)?</td>
</tr>
</tbody>
</table>
Parameterized reductions from **Independent Set** to $\text{WCS}[C_{1,3}]$ and from **Dominating Set** to $\text{WCS}[C_{2,2}]$.

Setting an input node to 1 corresponds to adding the corresponding vertex to the independent set / dominating set.
Definition 13

Let $t \in \{1, 2, \ldots \}$. A parameterized decision problem Π is $W[t]$-hard if for every parameterized decision problem Π' in $W[t]$, there is a parameterized reduction from Π' to Π. Π is $W[t]$-complete if $\Pi \in W[t]$ and Π is $W[t]$-hard.

It has been proved that **Independent Set** is $W[1]$-hard and **Dominating Set** is $W[2]$-hard. Therefore,

Theorem 14

Independent Set is $W[1]$-complete.

Theorem 15

Dominating Set is $W[2]$-complete.
To show that a parameterized decision problem \(\Pi \) is \(W[t] \)-hard:

- Select a \(W[t] \)-hard problem \(\Pi' \)
- Show that \(\Pi' \leq_{\text{FPT}} \Pi \) by designing a parameterized reduction from \(\Pi' \) to \(\Pi \)
 - Design an algorithm, that, for any instance \(I' \) of \(\Pi' \) with parameter \(k' \), produces an equivalent instance \(I \) of \(\Pi \) with parameter \(k \)
 - Show that \(k \) is upper bounded by a function of \(k' \)
 - Show that there exists a function \(f \) such that the running time of the algorithm is \(f(k') \cdot |I'|^{O(1)} \)
Reminder: Polynomial Time Reductions and NP-completeness

Parameterized Complexity Theory
- Parameterized reductions
- Parameterized complexity classes

Case studies

Further Reading
A clique in a graph $G = (V, E)$ is a subset of its vertices $S \subseteq V$ such that every two vertices from S are adjacent in G.

Clique

Input: Graph $G = (V, E)$, integer k

Parameter: k

Question: Does G have a clique of size k?

We will show that Clique is $W[1]$-hard by a parameterized reduction from Independent Set.
Clique is W[1]-hard

Lemma 16

\textbf{INDEPENDENT SET} \leq_{\textsc{FPT}} \textbf{CLIQUE}.

Proof.

Given any instance \((G = (V, E), k)\) for \textbf{INDEPENDENT SET}, we need to describe an \textsc{FPT} algorithm that constructs an equivalent instance \((G', k')\) for \textbf{CLIQUE} such that \(k' \leq g(k)\) for some computable function \(g\).
Clique is W[1]-hard

Lemma 16

Independent Set \(\leq_{\text{FPT}} \text{Clique} \).

Proof.

Given any instance \((G = (V, E), k)\) for **Independent Set**, we need to describe an **FPT** algorithm that constructs an equivalent instance \((G', k')\) for **Clique** such that \(k' \leq g(k) \) for some computable function \(g \).

Construction. Set \(k' \leftarrow k \) and \(G' \leftarrow \overline{G} = (V, \{uv : u, v \in V, u \neq v, uv \notin E\}) \).
Lemma 16

Indpendent Set \(\leq_{\text{FPT}} \text{Clique} \).

Proof.

Given any instance \((G = (V, E), k)\) for **Independent Set**, we need to describe an **FPT** algorithm that constructs an equivalent instance \((G', k')\) for **Clique** such that \(k' \leq g(k)\) for some computable function \(g\).

Construction. Set \(k' \leftarrow k\) and \(G' \leftarrow \overline{G} = (V, \{uv : u, v \in V, u \neq v, uv \notin E\})\).

Equivalence. We need to show that \((G, k)\) is a **Yes**-instance for **Independent Set** if and only if \((G', k')\) is a **Yes**-instance for **Clique**.
 Lemma 16

INDEPENDENT SET \(\leq_{\text{FPT}} \) CLIQUE.

Proof.

Given any instance \((G = (V, E), k)\) for **INDEPENDENT SET**, we need to describe an **FPT** algorithm that constructs an equivalent instance \((G', k')\) for **CLIQUE** such that \(k' \leq g(k)\) for some computable function \(g\).

Construction. Set \(k' \leftarrow k\) and \(G' \leftarrow \overline{G} = (V, \{uv : u, v \in V, u \neq v, uv \notin E\})\).

Equivalence. We need to show that \((G, k)\) is a **YES**-instance for **INDEPENDENT SET** if and only if \((G', k')\) is a **YES**-instance for **CLIQUE**.

\((\Rightarrow):\) Let \(S\) be an independent set of size \(k\) in \(G\). For every two vertices \(u, v \in S\), we have that \(uv \notin E\). Therefore, \(uv \in E(\overline{G})\) for every two vertices in \(S\). We conclude that \(S\) is a clique of size \(k\) in \(\overline{G}\).
Lemma 16

Independent Set \leq_{FPT} **Clique**.

Proof.

Given any instance $(G = (V, E), k)$ for **Independent Set**, we need to describe an **FPT** algorithm that constructs an equivalent instance (G', k') for **Clique** such that $k' \leq g(k)$ for some computable function g.

Construction. Set $k' \leftarrow k$ and $G' \leftarrow \overline{G} = (V, \{uv : u, v \in V, u \neq v, uv \notin E\})$.

Equivalence. We need to show that (G, k) is a **Yes**-instance for **Independent Set** if and only if (G', k') is a **Yes**-instance for **Clique**.

(\Rightarrow): Let S be an independent set of size k in G. For every two vertices $u, v \in S$, we have that $uv \notin E$. Therefore, $uv \in E(\overline{G})$ for every two vertices in S. We conclude that S is a clique of size k in \overline{G}.

(\Leftarrow): Let S be a clique of size k in \overline{G}. By a similar argument, S is an independent set of size k in G.
Lemma 16

Theorem. \(\text{INDEPENDENT SET} \leq_{\text{FPT}} \text{CLIQUE} \).

Proof.

Given any instance \((G = (V, E), k)\) for \text{INDEPENDENT SET}, we need to describe an \text{FPT} algorithm that constructs an equivalent instance \((G', k')\) for \text{CLIQUE} such that \(k' \leq g(k)\) for some computable function \(g\).

Construction. Set \(k' \leftarrow k\) and \(G' \leftarrow \overline{G} = (V, \{uv : u, v \in V, u \neq v, uv \notin E\})\).

Equivalence. We need to show that \((G, k)\) is a \text{YES}-instance for \text{INDEPENDENT SET} if and only if \((G', k')\) is a \text{YES}-instance for \text{CLIQUE}.

\((\Rightarrow)\): Let \(S\) be an independent set of size \(k\) in \(G\). For every two vertices \(u, v \in S\), we have that \(uv \notin E\). Therefore, \(uv \in E(\overline{G})\) for every two vertices in \(S\). We conclude that \(S\) is a clique of size \(k\) in \(\overline{G}\).

\((\Leftarrow)\): Let \(S\) be a clique of size \(k\) in \(\overline{G}\). By a similar argument, \(S\) is an independent set of size \(k\) in \(G\).

Parameter. \(k' \leq k\).
Clique is \(W[1]\)-hard

Lemma 16

\(\text{INDEPENDENT SET} \leq_{FPT} \text{CLIQUE} \).

Proof.

Given any instance \((G = (V, E), k)\) for \text{INDEPENDENT SET}, we need to describe an \text{FPT} algorithm that constructs an equivalent instance \((G', k')\) for \text{CLIQUE} such that \(k' \leq g(k)\) for some computable function \(g\).

Construction. Set \(k' \leftarrow k\) and \(G' \leftarrow \overline{G} = (V, \{uv : u, v \in V, u \neq v, uv \notin E\})\).

Equivalence. We need to show that \((G, k)\) is a \text{Yes}-instance for \text{INDEPENDENT SET} if and only if \((G', k')\) is a \text{Yes}-instance for \text{CLIQUE}.

\((\Rightarrow)\): Let \(S\) be an independent set of size \(k\) in \(G\). For every two vertices \(u, v \in S\), we have that \(uv \notin E\). Therefore, \(uv \in E(\overline{G})\) for every two vertices in \(S\). We conclude that \(S\) is a clique of size \(k\) in \(\overline{G}\).

\((\Leftarrow)\): Let \(S\) be a clique of size \(k\) in \(\overline{G}\). By a similar argument, \(S\) is an independent set of size \(k\) in \(G\).

Parameter. \(k' \leq k\).

Running time. The construction can clearly be done in \text{FPT} time, and even in polynomial time.
Corollary 17

\textbf{Clique} \textit{is W[1]-hard}
Recall: A k-coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, 2, \ldots, k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Multicolor Clique

Input: A graph $G = (V, E)$, an integer k, and a k-coloring of G

Parameter: k

Question: Does G have a clique of size k?

- Show that **Multicolor Clique** is $W[1]$-hard.
Recall: A k-coloring of a graph $G = (V, E)$ is a function $f : V \to \{1, 2, ..., k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

Multicolor Clique

Input: A graph $G = (V, E)$, an integer k, and a k-coloring of G

Parameter: k

Question: Does G have a clique of size k?

- Show that **Multicolor Clique** is $W[1]$-hard.

Hint: Reduce from **Clique**, and create k copies of V, each one being an independent set in G'.

Recall: A \(k \)-coloring of a graph \(G = (V, E) \) is a function \(f : V \rightarrow \{1, 2, ..., k\} \) assigning colors to \(V \) such that no two adjacent vertices receive the same color.

Multicolor Clique

<table>
<thead>
<tr>
<th>Input:</th>
<th>A graph (G = (V, E)), an integer (k), and a (k)-coloring of (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter:</td>
<td>(k)</td>
</tr>
<tr>
<td>Question:</td>
<td>Does (G) have a clique of size (k)?</td>
</tr>
</tbody>
</table>

- Show that **Multicolor Clique** is \(W[1] \)-hard.

Hint: Reduce from **Clique**, and create \(k \) copies of \(V \), each one being an independent set in \(G' \). Add edges to enforce constraints that a clique of size \(k \) in \(G' \) corresponds to a clique of size \(k \) in \(G \), and vice-versa.
Exercise

A set system S is a pair (V, H), where V is a finite set of elements and H is a set of subsets of V.

A set cover of a set system $S = (V, H)$ is a subset X of H such that each element of V is contained in at least one of the sets in X, i.e., $\bigcup_{Y \in X} Y = V$.

\begin{center}
\textbf{Set Cover}
\end{center}

\begin{tabular}{ll}
Input: & A set system $S = (V, H)$ and an integer k \\
Parameter: & k \\
Question: & Does S have a set cover of cardinality at most k? \\
\end{tabular}

Show that \textbf{Set Cover} is \textbf{W}[2]-hard.
Exercise

A set system S is a pair (V, H), where V is a finite set of elements and H is a set of subsets of V.

A set cover of a set system $S = (V, H)$ is a subset X of H such that each element of V is contained in at least one of the sets in X, i.e., $\bigcup_{Y \in X} Y = V$.

Set Cover

Input: A set system $S = (V, H)$ and an integer k

Parameter: k

Question: Does S have a set cover of cardinality at most k?

Show that Set Cover is $W[2]$-hard.

Hint: Reduce from Dominating Set.
A hitting set of a set system $S = (V, H)$ is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

Hitting Set

Input: A set system $S = (V, H)$ and an integer k

Parameter: k

Question: Does S have a hitting set of size at most k?

Show that **Hitting Set** is $W[2]$-hard.
A hitting set of a set system \(S = (V, H) \) is a subset \(X \) of \(V \) such that \(X \) contains at least one element of each set in \(H \), i.e., \(X \cap Y \neq \emptyset \) for each \(Y \in H \).

Hitting Set

Input: A set system \(S = (V, H) \) and an integer \(k \)

Parameter: \(k \)

Question: Does \(S \) have a hitting set of size at most \(k \)?

![Diagram showing a hitting set]

- Show that **Hitting Set** is \(W[2] \)-hard.

Hint: Exploit a duality between sets and elements in set covers and hitting sets.
Outline

1. Reminder: Polynomial Time Reductions and NP-completeness

2. Parameterized Complexity Theory
 - Parameterized reductions
 - Parameterized complexity classes

3. Case studies

4. Further Reading
Further Reading

