
1

COMP2121: Microprocessors and
Interfacing

I/O Devices (I)

http://www.cse.unsw.edu.au/~cs2121

Lecturer: Hui Wu

Term 2, 2019

Overview

• I/O Ports

• AVR Ports

1

2

2

What is I/O?

• I/O is Input or Output (Input/Output). It can be:

A number of digital bits formed into a number of digital inputs or
outputs called a port. These are usually eight bits wide and thus
referred to as a BYTE wide port, ie., byte wide input port, byte wide
output port.

A digital I/O port can be implemented by a number of D type
flip-flops.

A serial line from the microprocessor (Transmit or TX) and a serial
line to the microprocessor (Receive or RX) allowing serial data in the
form of a bit stream to be transmitted or received via a two wire
interface.

 Other I/O devices such as Analogue-to-Digital Converters (ADC)
and Digital-to-Analogue Converters (DAC), Timer modules, Interrupt
controllers etc.

Internal Structure of an Input Port

• The following diagram shows the structure of 4-bit input port. The input
port allows outside world inputs to be stored in the data latches so they
can be read by the microprocessor via the data bus.

3

4

3

Tri-state Gates

• The data bus connections must be via tri-state buffers so that the input
port is only connected to the data bus when the input port is selected. This
is achieved by connecting a chip select signal to the enable input signal
line. Note that the tri-state enable is active low.

A

1G

1G A Y

0 0 0
0 1 1
1 0 X
1 1 X High

Impedance

Tri-state gate

Y

Internal Structure of an Output Port

• An output port can be implemented by a number of D type flip-flops.

• The following diagram shows a 4-bit output port. The inputs are
connected to data bus and the outputs are connected to any output

interface.

5

6

4

Pin Layout of AVR ATMega2560

AVR Ports (1/4)

The functional description of one port pin

7

8

5

AVR Ports (2/4)

• All AVR ports have true Read-Modify-Write functionality
when used as general digital I/O ports.

 The direction of one port pin can be changed without
unintentionally changing the direction of any other pin with the SBI
and CBI instructions.

• The pin driver is strong enough to drive LED displays
directly.

• Three I/O memory address locations are allocated for each
port, one each for the Data Register – PORTx, Data Direction
Register – DDRx, and the Port Input Pins – PINx.

 x is one of A, B, C, D, E, F, G, H, I, J, K and L.

 The Port Input Pins I/O location is read only, while the Data
Register and the Data Direction Register are read/write.

AVR Ports (3/4)

• Each port pin consists of three register bits: DDxn,
PORTxn, and PINxn.

 The DDxn bits are accessed at the DDRx I/O address, the
PORTxn bits at the PORTx I/O address, and the PINxn bits at the
PINx I/O address.

 The DDxn bit in the DDRx Register selects the direction of this
pin.

 If DDxn is written logic one, Pxn is configured as an output pin. If
DDxn is written logic zero, Pxn is configured as an input pin.

 If PORTxn is written logic one when the pin is configured as an
output pin, the port pin is driven high (one). If PORTxn is written
logic zero when the pin is configured as an output pin, the port pin
is driven low (zero).

9

10

6

AVR Ports (4/4)

Port Pin Configurations

• PUD (Pull-UP Disable) is a bit in MCUCR register (MCU Control
Register). When this bit is written to one, the pull-ups in the I/O ports
are disabled even if the DDxn and PORTxn Registers are configured to
enable the pull-ups ({DDxn, PORTxn} = 0b01).

Reading An Externally Applied Pin
Value (1/3)

Synchronization when Reading an Externally Applied Pin Value

11

12

7

Reading An Externally Applied Pin
Value (2/3)

• Independent of the setting of Data Direction bit DDxn, the port
pin can be read through the PINxn Register bit.

• The PINxn Register bit and the preceding latch constitute a
synchronizer. This is needed to avoid metastability if the physical
pin changes value near the edge of the internal clock, but it also
introduces a delay.

• The maximum and minimum propagation delays are denoted by
tpd,max and tpd,min respectively.

Reading An Externally Applied Pin
Value (3/3)

• Consider the clock period starting shortly after the first falling
edge of the system clock. The latch is closed when the clock is
low, and goes transparent when the clock is high, as indicated by
the shaded region of the “SYNC LATCH” signal. The signal value
is latched when the system clock goes low. It is clocked into the
PINxn Register at the succeeding positive clock edge. As
indicated by the two arrows tpd,max and tpd,min, a single signal
transition on the pin will be delayed between ½ and 1½ system
clock period depending upon the time of assertion.

13

14

8

Reading A Software Assigned Pin
Value (1/2)

Synchronization when Reading a Software Assigned Pin Value

Reading A Software Assigned Pin
Value (2/2)

• When reading back a software assigned pin value, a nop instruction must
be inserted. The out instruction sets the “SYNC LATCH” signal at the
positive edge of the clock. In this case, the delay tpd through the
synchronizer is one system clock period.

15

16

9

Example 1: Reading a Pin Value (1/2)

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

Example 1: Reading a Pin Value (2/2)

• Example 1 shows how to set Port B pins 0 and 1 high, 2 and 3
low, and define the port pins from 4 to 7 as input with pull-ups
assigned to port pins 6 and 7.

• The resulting pin values are read back again, a nop instruction is
included to be able to read back the value recently assigned to
some of the pins.

17

18

10

Example 2: Controlling LEDs (1/3)

.include "m2560def.inc"

.def temp =r16

.def count=r15

.equ PATTERN1 = 0x00

.equ PATTERN2 = 0xFF

.cseg ;Notice that the following instruction is stored at 0x0

clr count ; Set count to 0

ser temp ; Set temp to 0b11111111

Consider our AVR development board. Assume that
• Push Button PB0 is connected to PA0 (PINA0), and
• Eight LEDs (LED 0 to LED 7) are connected to PC0 (PINC0) to
PC7 (PINC7), respectively.

Whenever PB0 is pushed, the following program turns the LEDs on if
they are off; otherwise, it turns the LEDs off.

Example 2: Controlling LEDs (2/3)

out PORTC, temp ; Write ones to all the LEDs

out DDRC, temp ; PORTC is all outputs

out PORTA, temp ; Enable pull-up resistors on PORTA

clr temp

out DDRA, temp ; PORTA is all inputs

loop:

sbic PINA, 0 ; Skip the next instruction if PB0 is pushed

rjmp loop ; If not pushed, check PB0 again

cpi count, 0

breq ledon

19

20

11

Example 2: Controlling LEDs (3/3)

ldi temp, PATTERN1 ; Turn the LEDs off if they are on

out PORTC, temp

clr count

rjmp loop

ledon:

ldi temp, PATTERN2 ; Turn the LEDs on if they are off.

out PORTC, temp

inc count

rjmp loop

ATmega2560 Block Diagram

21

22

12

AVR Board (1/2)

AVR Board (2/2)

• ATmega2560 microcontroller

• Motor

• LEDs

• LCD

• 4*4 keypad

• Speaker

• Microphone

• Push buttons

• Reset button

23

24

13

Reading Material

1. Overview, AVR CPU Core, I/O Port in ATmega2560 Data
Sheet.

2. Introduction to Pull-Up Resistors.
http://www.seattlerobotics.org/encoder/mar97/basics.html

3. http://en.wikipedia.org/wiki/Three-state_logic.

25

