
6a. Measure & Conquer

COMP6741: Parameterized and Exact Computation

Serge Gaspers12

1School of Computer Science and Engineering, UNSW Sydney, Australia
2Decision Sciences, Data61, CSIRO, Australia

Semester 2, 2018

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 1 / 48

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure & Conquer Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Further Reading

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 2 / 48

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure & Conquer Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Further Reading

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 3 / 48

Recall: Maximal Independent Sets

A vertex set S ⊆ V of a graph G = (V,E) is an independent set in G if there
is no edge uv ∈ E with u, v ∈ S.

An independent set is maximal if it is not a subset of any other independent
set.

Examples:

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 4 / 48

Enumeration problem: Enumerate all maximal independent
sets

Enum-MIS
Input: graph G
Output: all maximal independent sets of G

a b

c d

Maximal independent sets: {a, d}, {b}, {c}

Note: Let v be a vertex of a graph G. Every maximal independent set contains a
vertex from NG[v].

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 5 / 48

Enumeration problem: Enumerate all maximal independent
sets

Enum-MIS
Input: graph G
Output: all maximal independent sets of G

a b

c d

Maximal independent sets: {a, d}, {b}, {c}

Note: Let v be a vertex of a graph G. Every maximal independent set contains a
vertex from NG[v].

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 5 / 48

Branching Algorithm for Enum-MIS

Algorithm enum-mis(G, I)
Input : A graph G = (V,E), an independent set I of G.
Output: All maximal independent sets of G that are supersets of I.

1 G′ ← G−NG[I]
2 if V (G′) = ∅ then // G′ has no vertex

3 Output I

4 else
5 Select v ∈ V (G′) such that dG′(v) = δ(G′)// v has min degree in G′

6 Run enum-mis(G, I ∪ {u}) for each u ∈ NG′ [v]

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 6 / 48

Running Time Analysis

Let us upper bound by L(n) = 2αn the number of leaves in any search tree of
enum-mis for an instance with |V (G′)| ≤ n.

We minimize α subject to constraints obtained from the branching:

L(n) ≥ (d+ 1) · L(n− (d+ 1)) for each integer d ≥ 0.

⇔ 2αn ≥ d′ · 2α·(n−d
′) for each integer d′ ≥ 1.

⇔ 1 ≥ d′ · 2α·(−d
′) for each integer d′ ≥ 1.

For fixed d′, the smallest value for 2α satisfying the constraint is d′1/d
′
. The

function f(x) = x1/x has its maximum value for x = e and for integer x the
maximum value of f(x) is when x = 3.
Therefore, the minimum value for 2α for which all constraints hold is 31/3. We
can thus set L(n) = 3n/3.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 7 / 48

Running Time Analysis II

Since the height of the search trees is ≤ |V (G′)|, we obtain:

Theorem 1

Algorithm enum-mis has running time O∗(3n/3) ⊆ O(1.4423n), where n = |V |.

Corollary 2

A graph on n vertices has O(3n/3) maximal independent sets.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 8 / 48

Running Time Lower Bound

· · ·

Theorem 3

There is an infinite family of graphs with Ω(3n/3) maximal independent sets.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 9 / 48

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure & Conquer Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Further Reading

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 10 / 48

Maximum Independent Set

Maximum Independent Set
Input: graph G
Output: A largest independent set of G.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 11 / 48

Branching Algorithm for Maximum Independent Set

Algorithm mis(G)
Input : A graph G = (V,E).
Output: The size of a maximum i.s. of G.

1 if ∆(G) ≤ 2 then // G has max degree ≤ 2
2 return the size of a maximum i.s. of G in polynomial time

3 else if ∃v ∈ V : d(v) = 1 then // v has degree 1
4 return 1 + mis(G−N [v])

5 else if G is not connected then
6 Let G1 be a connected component of G
7 return mis(G1) + mis(G− V (G1))

8 else
9 Select v ∈ V s.t. d(v) = ∆(G) // v has max degree

10 return max (1 + mis(G−N [v]),mis(G− v))

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 12 / 48

Correctness

Line 4:

Lemma 4
If v ∈ V has degree 1, then G has a maximum independent set I with v ∈ I.

Proof.
Let J be a maximum independent set of G.
If v ∈ J we are done because we can take I = J .
If v /∈ J , then u ∈ J , where u is the neighbor of v, otherwise J would not be
maximum.
Set I = (J \ {u}) ∪ {v}. We have that I is an independent set, and, since
|I| = |J |, I is a maximum independent set containing v.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 13 / 48

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure & Conquer Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Further Reading

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 14 / 48

Simple Analysis I

Lemma 5 (Simple Analysis Lemma)

Let

A be a branching algorithm

α > 0, c ≥ 0 be constants

such that on input I, A calls itself recursively on instances I1, . . . , Ik, but, besides
the recursive calls, uses time O(|I|c), such that

(∀i : 1 ≤ i ≤ k) |Ii| ≤ |I| − 1, and (1)

2α·|I1| + · · ·+ 2α·|Ik| ≤ 2α·|I|. (2)

Then A solves any instance I in time O(|I|c+1) · 2α·|I|.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 15 / 48

Simple Analysis II

Proof.

By induction on |I|.
W.l.o.g., suppose the hypotheses’ O statements hide a constant factor d ≥ 0, and
for the base case assume that the algorithm returns the solution to an empty
instance in time d ≤ d · |I|c+12α·|I|.
Suppose the lemma holds for all instances of size at most |I| − 1 ≥ 0, then the
running time of algorithm A on instance I is

TA(I) ≤ d · |I|c +

k∑
i=1

TA(Ii) (by definition)

≤ d · |I|c +
∑

d · |Ii|c+12α·|Ii| (by the inductive hypothesis)

≤ d · |I|c + d · (|I| − 1)c+1
∑

2α·|Ii| (by (1))

≤ d · |I|c + d · (|I| − 1)c+12α·|I| (by (2))

≤ d · |I|c+12α·|I|.

The final inequality uses that α · |I| > 0 and holds for any c ≥ 0.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 16 / 48

Simple Analysis for mis

At each node of the search tree: O(n2)

G disconnected:
(1) If α · s < 1, then s < 1/α, and the algorithm solves G1 in constant time
(provided that α > 0). We can view this rule as a simplification rule,
removing G1 and making one recursive call on G− V (G1).
(2) If α · (n− s) < 1: similar as (1).
(3) Otherwise,

(∀s : 1/α ≤ s ≤ n− 1/α) 2α·s + 2α·(n−s) ≤ 2α·n. (3)

always satisfied since 2x + 2y ≤ 2x+y if x, y ≥ 1.

Branch on vertex of degree d ≥ 3

(∀d : 3 ≤ d ≤ n− 1) 2α·(n−1) + 2α·(n−1−d) ≤ 2αn. (4)

Dividing all these terms by 2αn, the constraints become

2−α + 2α·(−1−d) ≤ 1. (5)

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 17 / 48

Compute optimum α

The minimum α satisfying the constraints is obtained by solving a convex
mathematical program minimizing α subject to the constraints (the constraint for
d = 3 is sufficient as all other constraints are weaker).

Alternatively, set x := 2α, compute the unique positive real root of each of the
characteristic polynomials

cd(x) := x−1 + x−1−d − 1,

and take the maximum of these roots [Kullmann ’99].

d x α
3 1.3803 0.4650
4 1.3248 0.4057
5 1.2852 0.3620
6 1.2555 0.3282
7 1.2321 0.3011

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 18 / 48

Compute optimum α

The minimum α satisfying the constraints is obtained by solving a convex
mathematical program minimizing α subject to the constraints (the constraint for
d = 3 is sufficient as all other constraints are weaker).

Alternatively, set x := 2α, compute the unique positive real root of each of the
characteristic polynomials

cd(x) := x−1 + x−1−d − 1,

and take the maximum of these roots [Kullmann ’99].

d x α
3 1.3803 0.4650
4 1.3248 0.4057
5 1.2852 0.3620
6 1.2555 0.3282
7 1.2321 0.3011

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 18 / 48

Simple Analysis: Result

use the Simple Analysis Lemma with c = 2 and α = 0.464959

running time of Algorithm mis upper bounded by
O(n3) · 20.464959·n = O(20.4650·n) or O(1.3803n)

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 19 / 48

Lower bound

v1 v2 v3 v4 v5 v6 vn−1 vn

T (n) = T (n− 5) + T (n− 3)

for this graph, P 2
n , the worst case running time is 1.1938 . . .n · poly(n)

Run time of algo mis is Ω(1.1938n)

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 20 / 48

Worst-case running time — a mystery

Mystery

What is the worst-case running time of Algorithm mis?

lower bound Ω(1.1938n)

upper bound O(1.3803n)

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 21 / 48

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure & Conquer Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Further Reading

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 22 / 48

Search Trees

Denote µ(I) := α · |I|.

µ(I)

µ(I1)

.

µ(I2)

.

. . . µ(Ik)

.

Example: execution of mis on a P 2
n

n

n− 3

n− 6 n− 8

n− 5

n− 8 n− 10

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 23 / 48

Search Trees

Denote µ(I) := α · |I|.

µ(I)

µ(I1)

.

µ(I2)

.

. . . µ(Ik)

.

Example: execution of mis on a P 2
n

n

n− 3

n− 6 n− 8

n− 5

n− 8 n− 10

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 23 / 48

Branching number: Definition

Consider a constraint

2µ(I)−a1 + · · ·+ 2µ(I)−ak ≤ 2µ(I).

Its branching number is

2−a1 + · · ·+ 2−ak ,

and is denoted by

(a1, . . . , ak) .

Clearly, any constraint with branching number at most 1 is satisfied.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 24 / 48

Branching numbers: Properties

Dominance For any ai, bi such that ai ≥ bi for all i, 1 ≤ i ≤ k,

(a1, . . . , ak) ≤ (b1, . . . , bk) ,

as 2−a1 + · · ·+ 2−ak ≤ 2−b1 + · · ·+ 2−bk .
In particular, for any a, b > 0,

either (a, a) ≤ (a, b) or (b, b) ≤ (a, b) .

Balance If 0 < a ≤ b, then for any ε such that 0 ≤ ε ≤ a,

(a, b) ≤ (a− ε, b+ ε)

by convexity of 2x.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 25 / 48

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure & Conquer Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Further Reading

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 26 / 48

Measure & Conquer analysis

Goal

capture more structural changes when branching into subinstances

How?

potential-function method, a.k.a., Measure & Conquer
[Fomin, Grandoni, Kratsch ’09]

Example: Algorithm mis

advantage when degrees of vertices decrease

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 27 / 48

Measure

Instead of using the number of vertices, n, to track the progress of mis, let us use
a measure µ of G.

Definition 6
A measure µ for a problem P is a function from the set of all instances for P to
the set of non negative reals.

Let us use the following measure for the analysis of mis on graphs of maximum
degree at most 5:

µ(G) =

5∑
i=0

ωini,

where ni := |{v ∈ V : d(v) = i}|.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 28 / 48

Measure & Conquer Analysis

Lemma 7 (Measure & Conquer Lemma)

Let

A be a branching algorithm

c ≥ 0 be a constant, and

µ(·), η(·) be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I1, . . . , Ik, but, besides
the recursive calls, uses time O(η(I)c), such that

(∀i) η(Ii) ≤ η(I)− 1, and (6)

2µ(I1) + . . .+ 2µ(Ik) ≤ 2µ(I). (7)

Then A solves any instance I in time O(η(I)c+1) · 2µ(I).

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 29 / 48

Analysis of mis for degree at most 5

For µ(G) =
∑5
i=0 ωini to be a valid measure, we constrain that

wd ≥ 0 for each d ∈ {0, . . . , 5}

We also constrain that reducing the degree of a vertex does not increase the
measure (useful for analysis of the degree-1 simplification rule and the branching
rule):

−ωd + ωd−1 ≤ 0 for each d ∈ {1, . . . , 5}

Lines 1–2 is a halting rule and we merely need that it takes polynomial time so
that we can apply Lemma 7.

if ∆(G) ≤ 2 then // G has max degree ≤ 2
return the size of a maximum i.s. of G in polynomial time

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 30 / 48

Analysis of mis for degree at most 5

For µ(G) =
∑5
i=0 ωini to be a valid measure, we constrain that

wd ≥ 0 for each d ∈ {0, . . . , 5}

We also constrain that reducing the degree of a vertex does not increase the
measure (useful for analysis of the degree-1 simplification rule and the branching
rule):

−ωd + ωd−1 ≤ 0 for each d ∈ {1, . . . , 5}

Lines 1–2 is a halting rule and we merely need that it takes polynomial time so
that we can apply Lemma 7.

if ∆(G) ≤ 2 then // G has max degree ≤ 2
return the size of a maximum i.s. of G in polynomial time

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 30 / 48

Analysis of mis for degree at most 5 (II)

Lines 3–4 of mis need to satisfy (7).

else if ∃v ∈ V : d(v) = 1 then // v has degree 1
return 1 + mis(G−N [v])

The simplification rule removes v and its neighbor u.
We get a constraint for each possible degree of u:

2µ(G)−ω1−ωd ≤ 2µ(G) for each d ∈ {1, . . . , 5}
⇔ 2−ω1−ωd ≤ 20 for each d ∈ {1, . . . , 5}
⇔ −ω1 − ωd ≤ 0 for each d ∈ {1, . . . , 5}

These constraints are always satisfied since ωd ≥ 0 for each d ∈ {0, . . . , 5}.
Note: the degrees of u’s other neighbors (if any) decrease, but this degree change
does not increase the measure.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 31 / 48

Analysis of mis for degree at most 5 (III)

For lines 5–7 of mis we consider two cases.
else if G is not connected then

Let G1 be a connected component of G
return mis(G1) + mis(G− V (G1))

If µ(G1) < 1 (or µ(G− V (G1)) < 1, which is handled similarly), then we view
this rule as a simplification rule, which takes polynomial time to compute
mis(G1), and then makes a recursive call mis(G− V (G1)). To ensure that
instances with measure < 1 can be solved in polynomial time, we constrain that

wd > 0 for each d ∈ {3, 4, 5}

and this will be implied by other constraints.
Otherwise, µ(G1) ≥ 1 and µ(G− V (G1)) ≥ 1, and we need to satisfy (7).
Since µ(G) = µ(G1) + µ(G− V (G1)), the constraints

2µ(G1) + 2µ(G−V (G1)) ≤ 2µ(G)

are always satisfied since the slope of the function 2x is at least 1 when x ≥ 1.
(I.e., we get no new constraints on ω1, . . . , ω5.)

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 32 / 48

Analysis of mis for degree at most 5 (IV)

Lines 8–10 of mis need to satisfy (7).

else
Select v ∈ V s.t. d(v) = ∆(G) // v has max degree

return max (1 + mis(G−N [v]),mis(G− v))

We know that in G−N [v], some vertex of N2[v] has its degree decreased (unless
G has at most 6 vertices, which can be solved in constant time). Define

(∀d : 2 ≤ d ≤ 5) hd := min
2≤i≤d

{wi − wi−1}

We obtain the following constraints:

2µ(G)−wd−
∑d

i=2 pi·(wi−wi−1) + 2µ(G)−wd−
∑d

i=2 pi·wi−hd ≤ 2µ(G)

⇔ 2−wd−
∑d

i=2 pi·(wi−wi−1) + 2−wd−
∑d

i=2 pi·wi−hd ≤ 1

for all d, 3 ≤ d ≤ 5 (degree of v), and all pi, 2 ≤ i ≤ d, such that
∑d
i=2 pi = d

(number of neighbors of degree i).

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 33 / 48

Applying the lemma

Our constraints

wd ≥ 0

−ωd + ωd−1 ≤ 0

2−wd−
∑d

i=2 pi·(wi−wi−1) + 2−wd−
∑d

i=2 pi·wi−hd ≤ 1

are satisfied by the following values:

i wi hi
1 0 0
2 0.25 0.25
3 0.35 0.10
4 0.38 0.03
5 0.40 0.02

These values for wi satisfy all the constraints and µ(G) ≤ 2n/5 for any graph of
max degree ≤ 5.
Taking c = 2 and η(G) = n, the Measure & Conquer Lemma shows that mis has
run time O(n3)22n/5 = O(1.3196n) on graphs of max degree ≤ 5.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 34 / 48

Applying the lemma

Our constraints

wd ≥ 0

−ωd + ωd−1 ≤ 0

2−wd−
∑d

i=2 pi·(wi−wi−1) + 2−wd−
∑d

i=2 pi·wi−hd ≤ 1

are satisfied by the following values:

i wi hi
1 0 0
2 0.25 0.25
3 0.35 0.10
4 0.38 0.03
5 0.40 0.02

These values for wi satisfy all the constraints and µ(G) ≤ 2n/5 for any graph of
max degree ≤ 5.
Taking c = 2 and η(G) = n, the Measure & Conquer Lemma shows that mis has
run time O(n3)22n/5 = O(1.3196n) on graphs of max degree ≤ 5.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 34 / 48

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure & Conquer Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Further Reading

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 35 / 48

Compute optimal weights

By convex programming [Gaspers, Sorkin 2009]

All constraints are already convex, except conditions for hd

(∀d : 2 ≤ d ≤ 5) hd := min
2≤i≤d

{wi − wi−1}

�

(∀i, d : 2 ≤ i ≤ d ≤ 5) hd ≤ wi − wi−1.

Use existing convex programming solvers to find optimum weights.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 36 / 48

Convex program in AMPL

param maxd integer = 5;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg <= i
var Wmax; # maximum weight of W[d]

minimize Obj: Wmax; # minimize the maximum weight

subject to MaxWeight {d in DEGREES}:
Wmax >= W[d];

subject to gNotation {d in DEGREES : 2 <= d}:
g[d] <= W[d]-W[d-1];

subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
h[d] <= W[i]-W[i-1];

subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
2^(-W[3] -p2*g[2] -p3*g[3]) + 2^(-W[3] -p2*W[2] -p3*W[3] -h[3]) <=1;

subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
2^(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])

+ 2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :

p2+p3+p4+p5=5}:
2^(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])

+ 2^(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 37 / 48

Optimal weights

i wi hi
1 0 0
2 0.206018 0.206018
3 0.324109 0.118091
4 0.356007 0.031898
5 0.358044 0.002037

use the Measure & Conquer Lemma with µ(G) =
∑5
i=1 wini ≤ 0.358044 · n,

c = 2, and η(G) = n

mis has running time O(n3)20.358044·n = O(1.2817n)

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 38 / 48

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure & Conquer Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Further Reading

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 39 / 48

Exponential time subroutines

Lemma 8 (Combine Analysis Lemma)

Let

A be a branching algorithm and B be an algorithm,

c ≥ 0 be a constant, and

µ(·), µ′(·), η(·) be three measures for the instances of A and B,

such that µ′(I) ≤ µ(I) for all instances I, and on input I, A either solves I by
invoking B with running time O(η(I)c+1) · 2µ′(I), or calls itself recursively on
instances I1, . . . , Ik, but, besides the recursive calls, uses time O(η(I)c), such that

(∀i) η(Ii) ≤ η(I)− 1, and (8)

2µ(I1) + . . .+ 2µ(Ik) ≤ 2µ(I). (9)

Then A solves any instance I in time O(η(I)c+1) · 2µ(I).

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 40 / 48

Algorithm mis on general graphs

use the Combine Analysis Lemma with A = B = mis, c = 2,
µ(G) = 0.35805n, µ′(G) =

∑5
i=1 wini, and η(G) = n

for every instance G, µ′(G) ≤ µ(G) because ∀i, wi ≤ 0.35805

for each d ≥ 6,

(0.35805, (d+ 1) · 0.35805) ≤ 1

Thus, Algorithm mis has running time O(1.2817n) for graphs of arbitrary
degrees

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 41 / 48

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure & Conquer Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Further Reading

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 42 / 48

Rare Configurations

Branching on a local configuration C does not influence overall running time
if C is selected only a constant number of times on the path from the root to
a leaf of any search tree corresponding to the execution of the algorithm

Can be proved formally by using measure

µ′(I) :=

{
µ(I) + c if C may be selected in the current subtree

µ(I) otherwise.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 43 / 48

Avoid branching on regular instances in mis

else
Select v ∈ V such that

(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of

minimum degree
return max (1 + mis(G−N [v]),mis(G− v))

New measure:

µ′(G) = µ(G) +

5∑
d=3

[G has a d-regular subgraph] · Cd

where Cd, 3 ≤ d ≤ 5, are constants.

The Iverson bracket [F] =

{
1 if F true

0 otherwise

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 44 / 48

Resulting Branching numbers

For each d, 3 ≤ d ≤ 5 and all pi, 2 ≤ i ≤ d such that
∑d
i=2 pi = d and pd 6= d,

(
wd +

d∑
i=2

pi · (wi − wi−1), wd +

d∑
i=2

pi · wi + hd

)
.

All these branching numbers are at most 1 with the optimal set of weights on the
next slide

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 45 / 48

Result

i wi hi
1 0 0
2 0.207137 0.207137
3 0.322203 0.115066
4 0.343587 0.021384
5 0.347974 0.004387

Thus, the modified Algorithm mis has running time O(20.3480·n) = O(1.2728n).

Current best algorithm for MIS: O(1.1996n) [Xiao, Nagamochi ’13]

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 46 / 48

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure & Conquer Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely

3 Further Reading

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 47 / 48

Further Reading

Chapter 2, Branching in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

Chapter 6, Measure & Conquer in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

Chapter 2, Branching Algorithms in
Serge Gaspers. Exponential Time Algorithms: Structures, Measures, and
Bounds. VDM Verlag Dr. Mueller, 2010.

S. Gaspers (UNSW) Measure & Conquer Semester 2, 2018 48 / 48

	Introduction
	Maximum Independent Set
	Simple Analysis
	Search Trees and Branching Numbers
	Measure & Conquer Analysis
	Optimizing the measure
	Exponential Time Subroutines
	Structures that arise rarely

	Further Reading

