
COMP1511 - Programming
Fundamentals
Term 1, 2019 - Lecture 4

Stream B

What did we learn on Tuesday?
● EVERYTHING! - A recap of the C we’ve seen so far
● Problem Solving
● Continuing work with if and else statements
● Showing use of Relational and Logical Operators
● Showing some use of Modulus

What are we covering today?
Code Style

● Why being stylish is cool . . .
● Actually, it’s about readability and reusability of code

Looping

● Repetitive tasks shouldn’t require repetitive coding
● While loops

Code Style
Why do we write code for humans?

● Easier to read
● Easier to understand
● Less mistakes
● Faster overall development time

Good Coding Practices
What is good style?

● Indentation and Bracketing
● Names of variables and functions
● Repetition (or not) of code
● Clear comments
● Consistency

The easier it is to read and understand, the less mistakes we’ll make

Poor Code Style
Can we work with code that’s hard to read?

● I’d like to show you something I prepared earlier . . .
● CodeStyleBad.c is functionally our Dice Checking program

Let’s have a look at the code . . .

What went wrong?
We want more than: “Oh wow, that’s a mess”

What are the specific improvements that can make this better?

In the face of disaster, keep a clear head and focus on what can be fixed

Specific Issues
● Header comment doesn’t show the program’s intentions
● No blank lines separating different components
● Multiple expressions on the same line
● Inconsistent indenting
● Inconsistent spacing
● Variable names don’t make any sense
● Comments don’t mean anything
● Inconsistent bracketing of if statements
● Bracketing is not indented
● Inconsistent structure of identical code blocks
● The easter egg - there’s actually incorrect code also!

Keeping your house (code) clean
Regular care is always less work than a big cleanout

● Write comments before code
● Name your variables before you use them
● { everything inside gets indented 4 spaces
● } indent your closing brackets vertically with the line that opened them
● One expression per line
● Maintain consistency in spacing

Comments before code
Comments before code. It’s like thinking ahead

● Making plans with comments
● You can fill them out with correct code later

// Checking against the target value
if () {
 // success
} else if () {
 // tie
} else {
 // failure (all other possibilities)
}

Naming Variables
Variable names are for humans

● Can you describe the reason for a variable in a word or two?
● If your lab partner was to read this name, would it make sense?
● Does it distinguish it well against the other variables?

Indentation
A common convention is to use 4 spaces for indentation

int main (void) {
 // everything in here is indented 4 spaces
 int total = 5;
 if (total > 10) {
 // everything in here is indented 4 more
 total = 10;
 }
 // this closing curly bracket lines up
 // vertically with the if statement
 // that opened it
}
// this curly bracket also lines up vertically
// with the main function that opened it

One expression per line
Any single expression that runs should have its own line

int main (void) {
 // NOT LIKE THIS!
 int numOne; int numTwo;
 numOne = 25; numTwo = numOne + 10;
 if (numOne < numTwo) { numOne = numTwo; }
}

int main (void) {
 // Like this :)
 int numOne;
 int numTwo;
 numOne = 25;
 numTwo = numOne + 10;
 if (numOne < numTwo) {
 numOne = numTwo;
 }
}

Spacing
Operators need space to be easily read

int main (void) {
 // NOT LIKE THIS!
 int a;
 int b;
 int total=0;
 if(a<b&&b>=15){
 total=a+b;
 }
}

int main (void) {
 // Like this :)
 int a;
 int b;
 int total = 0;
 if(a < b && b >= 15) {
 total = a + b;
 }

}

More Information about Coding Style
● The course webpage has a Style Guide
● Wherever you end up coding, there will be different styles
● Our style is only one of them, but a good place to start!

Your assignments have coding style marks

Break Time
Code Style isn’t just to make it look nice

● Reduces errors later in development
● Makes it easier to test and modify
● Overall, speeds up development
● Makes your co-workers hate you less

Executing the same code more than once
Sometimes we need to repeat our work

● C normally executes in order, line by line
● if statements allow us to “turn on or off” parts of our code
● But up until now, we don’t have a way to repeat code
● Copy-pasting the same code again and again is not a feasible solution

While Loops
“while” is a C keyword that lets us loop code

● Format is very similar to an if statement
● The “question” in the (brackets) functions very similarly
● If it’s true, the body of the while loop will run
● If it’s false, the body won’t run and the program will continue
● Once a while reaches the end of its {} it will start again

While Loop Code Format

// expression is checked at the start of every loop
while (expression) {
 // this will run again and again
 // until the expression is evaluated as false
}
// when the program reaches this }, it will jump
// back to the start of the while loop

While Loop Control
We can use a variable to control how many times a while loop runs

● We call this variable a “loop counter”
● It’s an int that’s declared outside the loop
● It’s “termination condition” can be checked in the while
● It will be updated inside the loop

While Loop with a Loop Counter

// an integer outside the loop
int counter = 0;

while (counter < 10) {
 // Code in here will run 10 times

 counter = counter + 1;
}
// When counter hits 10 and the loop’s test fails
// the program will exit the loop

While Loops and Termination
It’s actually very easy to make a program that goes forever

Consider the following while loop:

while (1 < 2) {
 // Never going to give you up
 // Never going to let you down . . .
}

Using a Sentinel Variable with While Loops
A sentinel is a variable we use to intentionally exit a while loop

// an integer outside the loop
int endLoop = 0;
int inputNumber;

// The loop will exit if it reads an odd number
while (endLoop == 0) {
 scanf(“%d”, &inputNumber);
 if (inputNumber % 2 == 0) {
 printf(“Number is even.\n”);
 } else {
 printf(“Number is odd.\n”);
 endLoop = 1;
 }
}

While loops, if statements and other code
It’s all code!

● An if statement is some code
● A while loop is also some code

This means that you can . . .

● Put ifs inside while loops
● Put while loops inside ifs or elses
● Put while loops inside while loops inside if statements
● Etc

Let’s make a grid pattern
Start easy and then build up the program

● Start by looping and writing asterisks (*) to the terminal
● Take some user input and write exactly that many asterisks
● Then loop inside a loop to display a square grid
● Make the program run multiple times instead of just ending

Looping and writing a line of asterisks

// A simple program for drawing a grid pattern
// Part 1, draw a line of asterisks
// Marc Chee, February 2019

int main (void) {
 int gridSize = 8;
 int counter = 0;
 while (counter < gridSize) {
 printf(“*”);
 }
 printf(“\n”);
}

Looping based on user input
// A simple program for drawing a chessboard
// Part 2, let the user choose the length
// Marc Chee, February 2019

int main (void) {
 int gridSize;
 int counter = 0;

 // let the user choose our grid size
 printf(“Please enter the size of the grid: ”);
 scanf(“%d”, &gridSize);

 while (counter < gridSize) {
 printf(“*”);
 counter = counter + 1;
 }
 printf(“\n”);
}

Now draw a square instead of a line
 // let the user choose our grid size
 printf(“Please enter the size of the grid: ”);
 scanf(“%d”, &gridSize);

 // loop through and print multiple rows
 while (y < gridSize) {
 // print a single row
 while (x < gridSize) {
 printf(“*”);
 x = x + 1;
 }
 // the row is finished, start the next line
 printf(“\n”);
 y = y + 1;
 x = 0; // reset x for the next line
 }

Since we’re looping, let’s repeat
We want the program to run again instead of ending

● Put the main functionality of the program inside a loop
● Make sure whatever variables we used are reset each time

Repeating Grid Drawing

 int exit = 0; // a sentinel variable

 while(exit == 0) {
 // let the user choose our grid size
 printf("Please enter the size of the grid or 0 to exit: ");
 scanf("%d", &gridSize);

 // if the user has chosen to exit
 if (gridSize == 0) {
 printf("Thank you for using Grid Drawer.");
 // setting the sentinel to leave the loop
 exit = 1;
 }
 // the rest of the grid drawing code starts here . . .

The start of the while loop that contains our previous code

Repeating Grid Drawing
After the drawing is complete

 // looping drawing code finishes here
 }
 // make a gap between different runs
 printf("\n");
 // reset variables for the next run
 gridSize = 0;
 x = 0;
 y = 0;
 }
 // This ends the while loop, which will take us
 // back to the start of the program

We have The Grid
You’re only one step away from creating a digital frontier . . .

● We can draw square patterns of different sizes based on user input
● We’ve now used loops inside other loops
● We’ve also made loops that could potentially be infinite

Challenge

● Can you make the asterisks appear only as a border pattern?
● What about a checkerboard pattern?

What did we learn today?
Code Style

● Style is cool. Code Style is even cooler
● Readability and reusability is very important in code!
● We have some concrete guidelines for writing neat code

While Loops

● Repeating execution of code
● We’ve made some loops
● We’ve shown how to loop inside other loops
● We’ve shown different ways to end loops

