COMP1511 - Programming
Fundamentals

— Term 1, 2019 - Lecture 4 S
Stream B

What did we learn on Tuesday?

EVERYTHING! - A recap of the C we've seen so far
Problem Solving

Continuing work with if and else statements
Showing use of Relational and Logical Operators
Showing some use of Modulus

What are we covering today?

Code Style

e Why being stylish is cool . ..
e Actually, it's about readability and reusability of code

Looping

e Repetitive tasks shouldn’t require repetitive coding
e While loops

Code Style

Why do we write code for humans?

Easier to read

Easier to understand

Less mistakes

Faster overall development time

Good Coding Practices

What is good style?

Indentation and Bracketing
Names of variables and functions
Repetition (or not) of code

Clear comments

Consistency

The easier it is to read and understand, the less mistakes we'll make

Poor Code Style

Can we work with code that's hard to read?

e [|'dlike to show you something | prepared earlier . ..
e (CodeStyleBad.c is functionally our Dice Checking program

Let's have a look at the code. ..

What went wrong?

We want more than: “Oh wow, that's a mess”
What are the specific improvements that can make this better?

In the face of disaster, keep a clear head and focus on what can be fixed

Specific Issues

Header comment doesn't show the program'’s intentions
No blank lines separating different components
Multiple expressions on the same line

Inconsistent indenting

Inconsistent spacing

Variable names don't make any sense

Comments don't mean anything

Inconsistent bracketing of if statements

Bracketing is not indented

Inconsistent structure of identical code blocks

The easter egg - there’s actually incorrect code also!

Keeping your house (code) clean

Regular care is always less work than a big cleanout

Write comments before code

Name your variables before you use them

{ everything inside gets indented 4 spaces

} indent your closing brackets vertically with the line that opened them
One expression per line

Maintain consistency in spacing

Comments before code

Comments before code. It's like thinking ahead

e Making plans with comments
e You can fill them out with correct code later

// Checking against the target value
if () {
// success
} else if () {
// tie
} else {
// failure (all other possibilities)
}

Naming Variables

Variable names are for humans

e (Canyou describe the reason for a variable in a word or two?
e If your lab partner was to read this name, would it make sense?
e Does it distinguish it well against the other variables?

Indentation

A common convention is to use 4 spaces for indentation

int main (void) {
// everything in here is indented 4 spaces
int total = 5;
if (total > 10) {
// everything in here is indented 4 more
total = 10;
}
// this closing curly bracket lines up
// vertically with the if statement
// that opened it
}
// this curly bracket also lines up vertically
// with the main function that opened it

One expression per line

Any single expression that runs should have its own line

int main (void) {
// NOT LIKE THIS'
int numOne; int numTwo;
numOne = 25; numTwo = numOne + 10;
if (numOne < numTwo) { numOne = numTwo;

}

int main (void) {

// Like this :)

int numOne;

int numTwo;

numOne = 25;

numTwo = numOne + 10;
if (numOne < numTwo) {

numOne = numTwo;

}

Spacing

Operators need space to be easily read

int main (void) { int main (void) {

// NOT LIKE THIS! // Like this :)

int a; int a;

int b; int b;

int total=0; int total = 0;

if (a<b&&b>=15) { if(a < b && b >= 15) {

total=a+b; total = a + b;
} }

More Information about Coding Style

e The course webpage has a Style Guide
e Wherever you end up coding, there will be different styles
e Our style is only one of them, but a good place to start!

Your assignments have coding style marks

Break Time

Code Style isn’t just to make it look nice

Reduces errors later in development
Makes it easier to test and modify
Overall, speeds up development
Makes your co-workers hate you less

Executing the same code more than once

Sometimes we need to repeat our work

C normally executes in order, line by line

if statements allow us to “turn on or off” parts of our code

But up until now, we don’t have a way to repeat code

Copy-pasting the same code again and again is not a feasible solution

While Loops

“while” is a C keyword that lets us loop code

Format is very similar to an if statement

The “question” in the (brackets) functions very similarly

If it's true, the body of the while loop will run

If it's false, the body won’t run and the program will continue
Once a while reaches the end of its {} it will start again

While Loop Code Format

// expression is checked at the start of every loop
while (expression) {
// this will run again and again
// until the expression is evaluated as false
}
// when the program reaches this }, it will jump
// back to the start of the while loop

While Loop Control

We can use a variable to control how many times a while loop runs

We call this variable a “loop counter”

It's an int that's declared outside the loop

It's “termination condition” can be checked in the while
It will be updated inside the loop

While Loop with a Loop Counter

// an integer outside the loop
int counter = 0;

while (counter < 10) {
// Code in here will run 10 times

counter = counter + 1;

}
// When counter hits 10 and the loop’s test fails

// the program will exit the loop

While Loops and Termination

It's actually very easy to make a program that goes forever

Consider the following while loop:

while (1 < 2) {
// Never going to give you up
// Never going to let you down . . .

Using a Sentinel Variable with While Loops

A sentinel is a variable we use to intentionally exit a while loop

// an integer outside the loop
int endLoop = 0;
int inputNumber;

// The loop will exit if it reads an odd number
while (endLoop == 0) {
scanf (“"%$d”, &inputNumber) ;
if (inputNumber % 2 == 0) {
printf (“"Number is even.\n”);
} else {
printf (“"Number is odd.\n”);
endLoop = 1;

While loops, if statements and other code

It's all code!

e An if statementis some code
e Awhileloop is also some code

This means that you can.. ..

Put ifs inside while loops

Put while loops inside ifs or elses

Put while loops inside while loops inside if statements
Etc

Let’s make a grid pattern

Start easy and then build up the program

Start by looping and writing asterisks (*) to the terminal
Take some user input and write exactly that many asterisks
Then loop inside a loop to display a square grid

Make the program run multiple times instead of just ending

Looping and writing a line of asterisks

// A simple program for drawing a grid pattern
// Part 1, draw a line of asterisks
// Marc Chee, February 2019

int main (void) {
int gridSize = 8;
int counter = 0;
while (counter < gridSize) {
printf(“*”) ;
}
printf (“\n”);

Looping based on user input

// A simple program for drawing a chessboard
// Part 2, let the user choose the length
// Marc Chee, February 2019

int main (void) {
int gridSize;
int counter = 0;

// let the user choose our grid size
printf (“"Please enter the size of the grid: ”);
scanf (“%d”, &gridSize) ;

while (counter < gridSize) {
printf (“*”) ;
counter = counter + 1;

}
printf (“\n”);

}

Now draw a square instead of a line

// let the user choose our grid size
printf (“Please enter the size of the grid: ”);

scanf (“%d”, &gridSize) ;

// loop through and print multiple rows
while (y < gridSize) {
// print a single row
while (x < gridSize) {
printf (“*"”) ;
x=x+ 1;

}

// the row is finished, start the next line
printf (“\n”);

y =y + 1;

x = 0; // reset x for the next line

Since we’re looping, let’s repeat

We want the program to run again instead of ending

e Put the main functionality of the program inside a loop
e Make sure whatever variables we used are reset each time

Repeating Grid Drawing

The start of the while loop that contains our previous code

int exit = 0; // a sentinel variable

while (exit == 0) {
// let the user choose our grid size

printf ("Please enter the size of the grid or 0 to exit: ");
scanf ("%d", &gridSize) ;

// if the user has chosen to exit

if (gridSize == 0) {
printf ("Thank you for using Grid Drawer.");
// setting the sentinel to leave the loop
exit = 1;

}

// the rest of the grid drawing code starts here

Repeating Grid Drawing

After the drawing is complete

}

X =
y =

// This
// back

// looping drawing code finishes here

// make a gap between different runs
printf("\n");
// reset variables for the next run
gridSize = 0;

0;
0;

ends the while loop, which will take us
to the start of the program

We have The Grid

You're only one step away from creating a digital frontier. ..

e We can draw square patterns of different sizes based on user input
e We've now used loops inside other loops
e We've also made loops that could potentially be infinite

Challenge

e (Canyou make the asterisks appear only as a border pattern?
e What about a checkerboard pattern?

What did we learn today?

Code Style

e Styleis cool. Code Style is even cooler
e Readability and reusability is very important in code!
e We have some concrete guidelines for writing neat code

While Loops

Repeating execution of code

We've made some loops

We've shown how to loop inside other loops
We've shown different ways to end loops

