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COMP9334
Capacity Planning for Computer Systems 
and Networks

Week 4: Markov Chain
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Last week: Queues with Poisson arrivals

• Single-server Arrivals Departures

• Multi-server 1

2

m

m servers

Arrivals

Departures
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This week: Markov Chain

• You can use Markov Chain to analyse 
• Closed queueing network (see example below)
• Reliability problem

CPU

Disk

• There are n jobs in the closed 
system

• What is the response time of 
one job? 

• What is the response time if 
we replace the CPU with one 
that is twice as fast? 
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This lecture: Road Map

• A recap on the methodology that we used to analyse 
Poisson queues last week
• You were using Markov Chain without knowing it

• Analysing closed queueing networks
• Analysing reliability problem
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Recap: Properties of exponential distribution

• Exponential inter-arrival time and service time gives rise to 
the following two properties

• Inter-arrival time is exponential with mean rate λ, 
• Consider a small time interval δ
• Probability [ no arrival in δ ] = 1 - λ δ
• Probability [ 1 arrival in δ ] = λ δ
• Probability [ 2 or more arrivals in δ ] ≈ 0 

• Service time distribution is exponential with mean rate µ
• Consider a small time interval δ
• Probability [ 0 job will finish its service in next δ seconds ] = 1 - µ δ
• Probability [ 1 job will finish its service in next δ seconds ] = µ δ
• Probability [ > 2 jobs will finish its service in next δ seconds ] ≈ 0 
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Recap: M/M/2/2 queue

• A call centre analogy

Arrivals

2 operators. 
No holding slot.

Call centre:

Exponential
Inter-arrivals (λ)

No buffer.

Two serversExponential
Service time (µ) 

• Let us recall how we can analyse this system

• Calls are accepted as 
long as at least one 
operator is available.

• If both operators are 
busy, an arriving call is 
rejected.
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Recap: Analysing M/M/2/2 

• The system can be in one of the following three states
• State 0 = 0 call in the system (= both operators are idle)
• State 1 = 1 call in the system (= one operator is busy, one is idle)
• State 2 = 2 calls in the system (= both operators are busy)

• Define the probability that a certain state occurs



S1,2016 COMP9334 8

Recap: The transition probabilities 

• Consider a small time interval δ
• If the system is in State 1

• What is the probability that it will move to State 0?
• What is the probability that it will move to State 2?

• Transiting from State 1 è State 0
• This can only occur when a call finishes in time interval δ
• The probability for this to occur = µ δ

• Transiting from State 1 è State 2
• This can only occur when a call arrives in time interval δ
• The probability for this to occur = λ δ

• Prob [State 1 è State 0 ] = µ δ
• Prob [State 1 è State 2 ] = λ δ
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Exercise: The transition probabilities 

• Can you work out the following transition probabilities
• Prob [State 0 è State 1 ] = ?
• Prob [State 0 è State 2 ] = ?
• Prob [State 2 è State 0 ] = ?
• Prob [State 2 è State 1 ] = ? 
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Recap: The state transition diagram
• Given the following transition probabilities (over a small time interval δ)

• Prob [State 0 è State 1 ] = λ δ
• Prob [State 0 è State 2 ] = 0
• Prob [State 1 è State 0 ] = µ δ
• Prob [State 1 è State 2 ] = λ δ
• Prob [State 2 è State 0 ] = 0
• Prob [State 2 è State 1 ] = 2 µ δ

• We draw the following state transition diagram
• Note 1: We label the arc with transition rate = transition probability / δ
• Note 2: Arcs with zero rate are not drawn

0 1

λ

µ

2

λ

2µ
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Recap: Setting up the balance equations (1)
• For steady state, we have

• Probability of transiting into a “box” = Probability of transiting out of a “box”
• Rate of transiting into a “box” = Rate of transiting out of a “box”  

• Note a “box” can include one or more state
• The “box” is the dotted square shown below

0 1

λ

µ

2

λ

2µ
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Exercise: Setting up the balance equations (2)
• Set up the balance equations for the

• Red box
• Green box

0 1

λ

µ

2

λ

2µ

0 1

λ

µ

2

λ

2µ
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Recap: The balance equations 

• There are three balance equations

• Note that these three equations are not linearly independent
• First equation + Third equation = Second equation

• There are 3 unknowns (P0, P1, P2) but we have only 2 
equations

• We need 1 more equation. What is it? 
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Recap: Solving for the steady state probabilities

• An addition equation: Sum( Probabilities ) = 1
• Solve the following equations for the steady state 

probabilities P0, P1, P2 :

• By solving these 3 equations, we have



S1,2016 COMP9334 15

Recap: Steady state probabilities

• By solving the equations on the previous slide, we have the 
steady state probabilities are:

• If we know the values of λ
and µ, we can find the 
numerical values of 
these probabilities
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Markov chain

• The state-transition model that we have used is called a 
continuous-time Markov chain
• There is also discrete-time Markov chain 

• The transition from a state of the Markov chain to another 
state is characterised by an exponential distribution
• E.g. The transition from State p to State q is exponential with rate 

rpq, then consider a small time interval δ
• Probability [ Transition from State p to State q in time δ ] = rpq δ

0 1

λ

µ

2

λ

2µ
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Method for solving Markov chain

• A Markov chain can be solved by
• Identifying the states (may not be easy)
• Find the transition rate between the states
• Solve the steady state probabilities

• You can then use the steady state probabilities as a 
stepping stone to find the quantity of interest (e.g. response 
time etc.)

• We will study two Markov chain problems in this lecture:
• Problem 1: A Database server
• Problem 2: Data centre reliability problem
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Problem 1: A DB server

• A database server with a CPU, a fast disk and a slow disk
• At peak demand, there are always two users in the system
• Transactions alternate between the CPU and the disks 
• The transactions will equally likely find the file on either disk

CPU

Slow Disk

Fast Disk

2 users
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Problem 1: A DB server (cont’d)

• Fast disk is twice as fast as the slow disk
• Typical transactions take on average 10s CPU time
• Fast disk takes on average 15s to serve all files for a transactions
• Slow disk takes on average 30s to serve all files for a transactions
• The time that each transaction requires from the CPU and the disks is 

exponentially distributed

CPU (10s)

Slow Disk (30s)

Fast Disk (15s)

2 users
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Typical capacity planning questions

• What response time can a typical user expect?
• What is the utilisation of each of the system resources?
• How will performance parameters change if number of 

users are doubled?
• If fast disk fails and all files are moved to slow disk, what 

will be the new response time?
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Choice of states #1

• Use a 2-tuple (A,B) where 
• A is the location of the first user
• B is the location of the second user
• A, B are drawn from {CPU,FD,SD}

• FD = fast disk, SD = slow disk
• Example states are: 

• (CPU,CPU): both users at CPU
• (CPU, FD): 1st user at CPU, 2nd user at fast disk

• Total 9 states

• If there are n users, how many states will you need? 
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Choice of states #2

• We use a 3-tuple (X,Y,Z) 
• X is # users at CPU
• Y is # users at fast disk
• Z is # users at slow disk 

• Examples
• (2,0,0): both users at CPU
• (1,0,1): one user at CPU and one user at slow disk 

• Six possible states
• (2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)

• If there are n users, how many states do you need? 

Choice #2 requires
less #states. 
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Identifying state transitions (1)
• A state is: (#users at CPU, #users at fast disk, #users at slow disk)
• What is the rate of moving from State (2,0,0) to State (1,1,0)?

• This is caused by a job finishing at the CPU and move to fast disk
• Jobs complete at CPU at a rate of 6 transactions/minute
• Half of the jobs go to the fast disk

• Transition rate from (2,0,0) è (1,1,0) = 3 transactions/minute
• Similarly, transition rate from (2,0,0) è (1,0,1) = 3 transactions/minute

CPU (10s)

Slow Disk (30s)

Fast Disk (15s)

2 users
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State transition diagram (2)

• Transition rate from (2,0,0) è (1,1,0) = 3 transactions/minute
• Transition rate from (2,0,0) è (1,0,1) = 3 transactions/minute

2,0,0

1,0,11,1,0

0,2,0 0,1,1 0,0,2

3
3

• Question: What is the transition rate from (2,0,0) è (0,1,1)? 
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Identifying state transitions (2)
• From (1,1,0) there are 3 possible transitions

• Fast disk user goes back to CPU (2,0,0)
• CPU user goes to the fast disk (0,2,0), or 
• CPU user goes to the slow disk (0,1,1)

• Question: What are the transition rates in number of transactions per 
minute?

CPU (10s)

Slow Disk (30s)

Fast Disk (15s)

2 users
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Complete state transition diagram

2,0,0

1,0,11,1,0

0,2,0 0,1,1 0,0,2
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4

2

3

2

3

3

4

3

2
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Balance Equations

2,0,0

1,0,11,1,0

0,2,0 0,1,1 0,0,2

3

4

3

4

2

3

2

3

3

4

3

2

Define 
P(2,0,0) = Probability in state (2,0,0)
P(1,1,0) = Probability in state (1,1,0) etc.
Exercise: Write down the balance equation for state (2,0,0)
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Flow balance equations

• You can write one flow balance equation for each state:

P(2,0,0)+P(1,1,0)+P(1,0,1)+ P(0,2,0) + P(0,1,1) + P(0,0,2)=1

6 P(2,0,0) - 4 P(1,1,0) - 2 P(1,0,1)+ 0 P(0,2,0) + 0 P(0,1,1) + 0 P(0,0,2)=0

-3 P(2,0,0) + 10 P(1,1,0) + 0 P(1,0,1) - 4 P(0,2,0) -2 P(0,1,1) + 0 P(0,0,2) =0

-3 P(2,0,0) + 0 P(1,1,0) + 8 P(1,0,1) + 0 P(0,2,0) - 4 P(0,1,1) - 2 P(0,0,2)  =0

0 P(2,0,0) - 3 P(1,1,0) + 0 P(1,0,1) + 4 P(0,2,0) + 0 P(0,1,1) + 0 P(0,0,2)  =0

0 P(2,0,0) - 3 P(1,1,0) - 3 P(1,0,1) + 0 P(0,2,0) + 6 P(0,1,1) + 0 P(0,0,2)  =0

0 P(2,0,0) + 0 P(1,1,0) - 3 P(1,0,1) + 0 P(0,2,0) + 0 P(0,1,1) + 2 P(0,0,2)  =0

• However, there are only 5 linearly independent equations.
• Need one more equation:
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Steady State Probability

• You can find the steady state probabilities from 6 equations 
• It’s easier to solve the equations by a software packages, e.g

• Matlab, Scilab, Octave, Excel etc. 
• See “Software” under course web page

• The solutions are:
• P(2,0,0) = 0.1391
• P(1,1,0) = 0.1043
• P(1,0,1) = 0.2087
• P(0,2,0) = 0.0783
• P(0,1,1) = 0.1565
• P(0,0,2) = 0.3131

• I used Matlab to solve these equations
• The file is “dataserver.m” (can be downloaded from the course web 

site)

• How can we use these results for capacity planning? 



S1,2016 COMP9334 30

Model interpretation
• Response time of each transaction

• Use Little’s Law R = N/X with N = 2
• For this system:

• System throughput = CPU Throughput

• Throughput = Utilisation x Service rate
• Recall Utilisation = Throughput x Service time (From Lecture 2)

• CPU utilisation (using states where there is a job at CPU): 
P(2,0,0)+ P(1,1,0)+P(1,0,1)= 0.452

• Throughput = 0.452 x 6 = 2.7130 transactions / minute

• Response time (with 2 users) = 2 /2.7126 = 0.7372 minutes per 
transaction
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Sample capacity planning problem

• What is the response time if the system have up to 4 users 
instead of 2 users only?
• You can’t use the previous Markov chain
• You need to develop a new Markov chain

• The states are again (#users at CPU, #users at fast disk, #users at 
slow disk)

• States are (4,0,0), (3,1,0), (1,2,1) etc.
• There are 15 states
• Determine the transition rates
• Write down the balance equations and solve them.
• Use the steady state probabilities and Little’s Law to determine the 

new response time 
• You can do this as an exercise
• Throughput = 3.4768 (up 28%), response time = 60.03 seconds (up 

56%)
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Computation aspect of Markov chain

• This example shows that when there are a large number of 
users, the burden to build a Markov chain model is large
• 15 states
• Many transitions
• Need to solve 15 equations in 15 unknowns

• Is there a faster way to do this?
• Yes, we will look at Mean Value Analysis in a few weeks and it can 

obtain the response time much more quickly
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Reliability problem using Markov chain

• Consider the working-repair cycle of a machine
• “Failure” is an arrival to the repair workshop
• “Repair” time is the service time to repair the machine
• Let us assume

• “Time-to-next-failure” and “Repair time” are exponentially 
distributed

WorkingWorking

timeTime-to-next-failure Mean-time-to-repair

Machine fails at these points in time

Working

• Note: Mean-time-to-repair includes waiting (or queueing) time for repair 
and actual time under repair
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Data centre reliability problem

• Example: A data centre has 10 machines
• Each machine may go down

• Time-to-next-failure is exponentially distributed with mean 90 
days

• Repair time is exponentially distributed with mean 6 hours
• Capacity planning question:

• Can I make sure that at least 8 machines are available 
99.9999% of the time? 

• What is the probability that at least 6 machines are available?
• How many repair staff are required to guarantee that at least k

machines are available with a given probability?
• What is the mean time to repair (MTTR) a machine?

• Note: Mean-time-to-repair includes waiting time at the repair 
queue. 
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Data centre reliability - general problem

• Data centre has
• M machines
• N staff maintain and repair machine
• Assumption: M > N

• Automatic diagnostic system
• Check “heartbeat” by “ping” (Failure detection)
• Staff are informed if failure is detected

• Repair work
• If a machine fails, any one of the idle repair staff (if there is one) will attend to 

it. 
• If all repair staff are busy, a failed machine will need to wait until a repair staff 

has finished its work
• This is a queueing problem solvable by Markov chain!!!
• Let us denote

• λ = 1 / Mean-time-to-failure
• µ = 1/ Mean repair time 
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Queueing model for data centre example

An arrival is 
due to a 
machine
failure.

A departure
occurs 
when a 
machine 
has been 
repaired.

We build a
Markov
chain for
this box.
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Markov model for the repair queue

• State k represents k machines have failed
• Part of the state transition diagram is showed below

0 1 2
M λ

µ

(M-1) λ

2µ
The rate of failure for one machine is λ. In State 0, 
there are M working machine, the failure rate is Mλ. 

The same argument holds for other state
transition probability. 
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Markov Model for the repair queue

Note: There are only (M+1) states. 

Why is it Nµ?
Why not (N+1)µ?
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Solving the model

• We can solve for P(0), P(1), …, P(M)

Where
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Using the model

• Probability that exactly k machines are available = P(M-k)
• Probability that at least k machines are available

= P(0) + P(1) … + P(M-k)
• But expression for P(k)’s are complicated, need numerical 

software

• Example:
• M = 120
• Mean-time-to-failure = 500 minutes
• Mean repair time = 20 minutes
• N = 2, 5 or 10
• The results are showed in the graphs in the next 2 pages

• I used the file “data_centre.m” to do the computation, the file is 
available on the course web site. 
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Probability that exactly k machines operate
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Probability that at least k machines operate



Throughput
~ Mean machine failure 
rate
(see next page)

Think time ~ Mean-time-to-failure (MTTR)  = 1 / λ

Mean time to repair
(MTTR)
= Queueing time for 
repair + actual repair
time

Can compute MTTR
using Little’s Law.
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Mean machine failure rate

State Probability Failure rate

0 P(0) Mλ
1 P(1) (M-1)λ
2 P(2) (M-2)λ
… …

k P(k) (M-k)λ
… …

M P(M) 0
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Continuous-time Markov chain

• Useful for analysing queues when the inter-arrival or 
service time distribution are exponential

• The procedure is fairly standard for obtaining the steady 
state probability distribution
• Identify the state
• Find the state transition rates
• Set up the balance equations
• Solve the steady state probability

• We can use the steady state probability to obtain other 
performance metrics: throughput, response time etc.
• May need Little’s Law etc. 

• Continuous-time Markov chain is only applicable when the 
underlying probability distribution is exponential but the 
operations laws (e.g. Little’s Law) are applicable no matter 
what the underlying probability distributions are. 
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References

• Recommended reading
• The database server example is taken from Menasce et al., 
“Performance by design”, Chapter 10 

• The data centre example is taken from Mensace et al, 
“Performance by desing”, Chapter 7, Sections 1-4

• For a more in-depth, and mathematical discussion of 
continuous-time Markov chain, see
• Alberto Leon-Gracia, “Probabilities and random processes for 

Electrical Engineering”, Chapter 8.
• Leonard Kleinrock, “Queueing Systems”, Volume 1

• For mathematical software that you can use to solve a set 
of linear equations or do numerical calculations, go to the 
course web site and click on “Software”. 


