Exercise 1. Suppose there exists a \(O^*(1.2^n) \) time algorithm, which, given a graph \(G \) on \(n \) vertices, computes the size of a largest independent set of \(G \).

Design an algorithm, which, given a graph \(G \), finds a largest independent set of \(G \) in time \(O^*(1.2^n) \).

Exercise 2. Let \(A \) be a branching algorithm, such that, on any input of size at most \(n \) its search tree has height at most \(n \) and for the number of leaves \(L(n) \), we have
\[
L(n) = 3 \cdot L(n - 2)
\]
Upper bound the running time of \(A \), assuming it spends only polynomial time at each node of the search tree.

Exercise 3. Same question, except that
\[
L(n) \leq \max \left\{ \begin{array}{l}
2 \cdot L(n - 3) \\
L(n - 2) + L(n - 4) \\
2 \cdot L(n - 2) \\
L(n - 1)
\end{array} \right.
\]

Exercise 4. Consider the Max 2-CSP problem

Max 2-CSP

Input: A graph \(G = (V, E) \) and a set \(S \) of score functions containing
- a score function \(s_e : \{0, 1\}^2 \to \mathbb{N}_0 \) for each edge \(e \in E \),
- a score function \(s_v : \{0, 1\} \to \mathbb{N}_0 \) for each vertex \(v \in V \), and
- a score “function” \(s_\emptyset : \{0, 1\}^0 \to \mathbb{N}_0 \) (which takes no arguments and is just a constant convenient for bookkeeping).

Output: The maximum score \(s(\phi) \) of an assignment \(\phi : V \to \{0, 1\} \):
\[
s(\phi) := s_\emptyset + \sum_{v \in V} s_v(\phi(v)) + \sum_{uv \in E} s_{uv}(\phi(u), \phi(v)).
\]

1. Design simplification rules for vertices of degree \(\leq 2 \).
2. Using the simple analysis, design and analyze an \(O^*(2^{m/4}) \) time algorithm, where \(m = |E| \).
3. Use the measure \(\mu := w_e \cdot m + (\sum_{v \in V} w_{deg(v)}) \) to improve the analysis to \(O^*(2^{m/5}) \).