Code Verification and Automated Theorem Prover
(Week 4)

Yulei Sui

School of Computer Science and Engineering
University of New South Wales, Australia

- ___|]
COMP6131 Software Security Analysis 2025

Today’s class

C Code
SVFStmt / ICFGNode
Assignment-1
o |70 ey
Analysis

path1 path2---

COMP6131 Software Security Analysis 2025

Today’s class

Today's class

g

C Code — —2 - - == A sat

Lab-Exercise-2

Manual Translation

(Z3 Expressions)

)

|
- — = _—— -~ e -

- AN
fransiation; ooy, ced | ssE | Logical Formulas
SVFStmt/ICFGNode | Rules f o) ! Z3 Solver

\
\

) unsat
Assignment-1

LLvwy | "I~ Control-Flow Automated
Reachablity .

Clang . Translation
Analysis

Assignment-2

path1 path2---

® In Lab-Exercise-2 and Assignment-2, we will conduct code verification to prove code assertions on top of
reachability analysis (Assignment-1).

® Translating C statements (Lab-Exercise-2) and SVFStmt/ICFGNode (Assignment-2) to logical
formulas/expressions and solve them to verify code assertions using automated theorem prover (i.e., Z3)

2

COMP6131 Software Security Analysis 2025

Formal Verification For Code
Specification

- __|]
COMP6131 Software Security Analysis 2025

Code implementation

IIES

Formal Verification For Code

Specification Code implementation
»U« translate ‘U’ translate

logical formulas of specification Logical formulas of code implementation.

COMP6131 Software Security Analysis 2025

Formal Verification For Code

Specification Code implementation
»U« translate ‘U’ translate

logical formulas of specification Logical formulas of code implementation.

* Proving the correctness of your code given a specification (or spec) using
formal methods of mathematics

* Make the connection between specifications and implementations rigid,
reliable and secure by translating specification and code into logical formulas.

e The application of theorem proving tools to perform satisfiability checking of
logical formulas.

e 3
COMP6131 Software Security Analysis 2025

Specification
¢ Specifications independent of the source code
® Formal specification in a separate file from the source code, written in a
specification language and accepted by theorem provers

- ___|]
COMP6131 Software Security Analysis 2025

https://en.wikipedia.org/wiki/Hoare_logic
https://www.hillelwayne.com/post/why-dont-people-use-formal-methods

Specification
¢ Specifications independent of the source code
® Formal specification in a separate file from the source code, written in a
specification language and accepted by theorem provers
e Specifications embedded in the source code (This course)
® assume(expr): an assumed precondition of a program that expression expr
always be true and uses this assumed knowledge to execute the program.
assmue is often optional as many verification scenarios may not have
preconditions, including Lab-Exercise-2 and Assignment-2.
® assert(expr): an expected postcondition embedded in the program to check
that expr always holds for any execution, otherwise the program terminates. We
use svf_assert in our lab/assignment as an alternative for verification purposes.

COMP6131 Software Security Analysis 2025

https://en.wikipedia.org/wiki/Hoare_logic
https://www.hillelwayne.com/post/why-dont-people-use-formal-methods

Specification
¢ Specifications independent of the source code
® Formal specification in a separate file from the source code, written in a
specification language and accepted by theorem provers
e Specifications embedded in the source code (This course)
® assume(expr): an assumed precondition of a program that expression expr
always be true and uses this assumed knowledge to execute the program.
assmue is often optional as many verification scenarios may not have
preconditions, including Lab-Exercise-2 and Assignment-2.
® assert(expr): an expected postcondition embedded in the program to check
that expr always holds for any execution, otherwise the program terminates. We
use svf_assert in our lab/assignment as an alternative for verification purposes.
e Hoare logic triple P{prog}Q, represents a program expressed by a predicate
(first-order) logic. It describes that when the precondition P is met, executing
the program prog establishes the postcondition Q.

Hoare logic: https://en.wikipedia.org/wiki/Hoare_logic

Formal specifications: https://www.hillelwayne.com/post/why-dont-people-use-formal-methods
* 4

COMP6131 Software Security Analysis 2025

https://en.wikipedia.org/wiki/Hoare_logic
https://www.hillelwayne.com/post/why-dont-people-use-formal-methods

Pre-/Post-Conditions and Satisfiability

Prove whether the post-condition (assert) holds after executing the program given
the pre-condition (assume).

assume (100 > x > 0); // P

if(x > 10) {
y=x+1;
} translate feed into
el —> y(P{prog}Q) = SAT/SMT
} ’ logical formula Solver
assert(y >=x + 1); // Q
Will the assertion hold?
| 5

COMP6131 Software Security Analysis 2025

Assertions as Specifications

¢ In our lab and assignments, we need to verify whether the assertions
(svf_assert) as specifications are satisfiable (expected results) or not.

e An assertion is a predicate or an expression that always should evaluate to
true at that point during code execution.

® help a programmer read the code
* help the program detect its own defects
® help catch errors earlier and pinpoint sources of errors

if (expr is true){

assert (expr); // continue normal execution
}
or unfold else{
__assert_fail();
svf_assert (expr) ; // program failure and terminate the program
}
e 6

COMP6131 Software Security Analysis 2025

Satisfiability Solving as Logic Inference

Satisfiability solving of hoare logic triple P{prog}Q as a logic inference problem:

e Given P{prog}Q represented by a set of constraints (logical formulas)
extracted from code, we express P{prog} as KB knowledge base or
premises, and Q is the conclusion. Revisit our previous example as below:

__|
COMP6131 Software Security Analysis 2025

Satisfiability Solving as Logic Inference

Satisfiability solving of hoare logic triple P{prog}Q as a logic inference problem:
e Given P{prog}Q represented by a set of constraints (logical formulas)
extracted from code, we express P{prog} as KB knowledge base or
premises, and Q is the conclusion. Revisit our previous example as below:
® KB: (100 >x>0)A((x>10Ay=x+1)V (x<10 Ay = 10))
°* Q:y>x+1
e KB-Q?
® Does KB semantically entail Q?
e [f all constraints in KB are true, is the assertion true?
* |s the specification Q satisfiable given constraints from code?

e Each element (proposition or predicate) in KB can be seen as a premise
and Q is the conclusion.

__|
COMP6131 Software Security Analysis 2025

Propositional Logic (Statement Logic)
A proposition is a statement that is either true or false. Propositional logic studies
the ways statements can interact with each other.
* Propositional variables (e.g., S) represent propositions or statements in the
formal system.
¢ A propositional formula is logical formula with propositional variables and
logical connectives like and (A) , or (V), negation (—), implication (—)
® (S1 A Sp) — Q. This formula means that if Sy and S, are both true, then Q is
true.
® S; and S, are propositional variables. A and — are logical connectives.
¢ Logic inference allows certain logic formulas to be derived. These derived
formulas are called theorems (or true propositions). The derivation can be
interpreted as proof of the proposition represented by the theorem.

https://en.wikipedia.org/wiki/Propositional_calculus
http://discrete.openmathbooks.org/dmoi2/sec_propositional.html
e 8
COMP6131 Software Security Analysis 2025

https://en.wikipedia.org/wiki/Propositional_calculus
http://discrete.openmathbooks.org/dmoi2/sec_propositional.html

Predicate Logic (First-Order Logic)
Predicate logic is propositional logic with predicates and quantification.
¢ Propositional logic: boolean logic which represents statements without
reflecting their structures and relations
¢ Predicate logic: is more expressive and further analyzes proposition(s) by
representing their entities’ properties and relations and to group entities, i.e.,
additionally covers predicates and quantification.

e
COMP6131 Software Security Analysis 2025

https://en.wikipedia.org/wiki/First-order_logic
https://www.youtube.com/watch?v=ARywou8HLQk

Predicate Logic (First-Order Logic)
Predicate logic is propositional logic with predicates and quantification.
¢ Propositional logic: boolean logic which represents statements without
reflecting their structures and relations
¢ Predicate logic: is more expressive and further analyzes proposition(s) by
representing their entities’ properties and relations and to group entities, i.e.,
additionally covers predicates and quantification.
* A predicate P takes one or more variables/entities as input and outputs a
proposition and has a truth value (either true or false).
* A statement whose truth value is dependent on variables.
® For example, in P(x) : x > 5, “x” is the variable and “x > 5” is the predicate.
After assigning x with the value 6, P(x) becomes a proposition 6 > 5.
e A quantifier is applied to a set of entities
¢ Universal quantifier V, meaning all, every
¢ Existential quantifier 3, meaning some, there exists

https://en.wikipedia.org/wiki/First-order_logic https://www.youtube.com/watch?v=ARywouS8HLQk
|
COMP6131 Software Security Analysis 2025

https://en.wikipedia.org/wiki/First-order_logic
https://www.youtube.com/watch?v=ARywou8HLQk

Predicate Logic (Natural Language Example)

Consider the two statements
e “Jack got a high distinction”
e “Peter got a high distinction”

In propositional logic, these statements are viewed as being unrelated and the
sub-statements/words/entities are not further analyzed.

¢ Predicate logic allows us to define a predicate P representing “got a high
distinction” which occurs in both sentences.

* P(x) is the predicate logic statement (formula) which accepts a name x
and output as “x got a high distinction”.

e
COMP6131 Software Security Analysis 2025

10

Predicate Logic (Code Example)

Consider these four statements

COMP6131 Software Security Analysis 2025

S1Z
821

S — Q:

Q:

X > 20;
x> 10;
if(x >10) y = 15;
y =15;

11

Predicate Logic (Code Example)

Sy: x > 20;

, So: x> 10;
Consider these four statements S, Q@ if(x>10)y = 15;

Q: y = 15;

¢ In propositional logic, each statement (including its variables and constants)

is viewed as one proposition. Their relations are not further analyzed.
® Given propositions Sy and S, — Q as the knowledge base KB. Does the
following semantically entail {Sy, S2—Q }FQor (S1 A (S2— Q)) — Q hold?

__|
COMP6131 Software Security Analysis 2025

11

Predicate Logic (Code Example)

Sy: x > 20;

, So: x> 10;
Consider these four statements S, Q@ if(x>10)y = 15;

Q: y = 15;

¢ In propositional logic, each statement (including its variables and constants)

is viewed as one proposition. Their relations are not further analyzed.
® Given propositions Sy and S, — Q as the knowledge base KB. Does the
following semantically entail {Sy, S2—Q }FQor (S1 A (S2— Q)) — Q hold?
e Answer: No! (The relation between S; and S; is not captured).

__|
COMP6131 Software Security Analysis 2025

11

Predicate Logic (Code Example)

Sy: x > 20;

, So: x> 10;
Consider these four statements S, Q@ if(x>10)y = 15;

Q: y = 15;

¢ In propositional logic, each statement (including its variables and constants)

is viewed as one proposition. Their relations are not further analyzed.
® Given propositions Sy and S, — Q as the knowledge base KB. Does the
following semantically entail {Sy, S2—Q }FQor (S1 A (S2— Q)) — Q hold?
e Answer: No! (The relation between S; and S; is not captured).
¢ Predicate logic allows us to define three predicates: P;(x) represents x>
20; P>(x) represents x>10; Q(y) represents y=15 for the properties of x, y.
Does the following hold using predicate logical for the inference?
* {Pi(x), P2(x) = Q(y) }-Q(y) or (Pi(x) A P2(x)—=Q(y)) = Q(y)

__|
COMP6131 Software Security Analysis 2025

11

Predicate Logic (Code Example)

Sy: x > 20;

, So: x> 10;
Consider these four statements S, Q@ if(x>10)y = 15;

Q: y = 15;

¢ In propositional logic, each statement (including its variables and constants)

is viewed as one proposition. Their relations are not further analyzed.
® Given propositions Sy and S, — Q as the knowledge base KB. Does the
following semantically entail {Sy, S2—Q }FQor (S1 A (S2— Q)) — Q hold?
e Answer: No! (The relation between S; and S; is not captured).
¢ Predicate logic allows us to define three predicates: P;(x) represents x>
20; P>(x) represents x>10; Q(y) represents y=15 for the properties of x, y.
Does the following hold using predicate logical for the inference?
* {P1(x), Pa(x) = Q(y) }-Q(y) or (Pi(x) A Pa(x)—=Q(y)) — Q(y)
* {x>20,x>10—-y=15}+y=15
® Answer: Yes!

__|
COMP6131 Software Security Analysis 2025

11

Satisfiability Checking (Revisit Our Example)

Given the predicate formula (P{prog}Q), we can verify the correctness of a
program against the assertion specification Q by checking «’s satisfiability (SAT).

assume(100 > x > 0); // P

if(x > 10) {
y=x+1;
} translate feed into
else { — Y(P{prog}Q) — SAT/SMT
} y = 10; logical formula Solver

assert(y >=x + 1); // Q

- ___|]
COMP6131 Software Security Analysis 2025

12

Satisfiability Checking for Code Verification

* (P{prog}Q) is satisfiable if a program prog is correct for there valid inputs.

Vx ¥y P(x) A Sprog(x,y) — Q(x,y)

® P(x) is the pre-condition predicate (100 > x > 0) over variables x.

* Suog(x,y) is the predicate representing prog which accepts x as its input, and
terminates with output y.

® Q(x,y) is the post-condition predicate (y >= x + 1) over variables x, y.

- __|]
COMP6131 Software Security Analysis 2025

13

https://en.wikipedia.org/wiki/Logical_equivalence

Satisfiability Checking for Code Verification

* (P{prog}Q) is satisfiable if a program prog is correct for there valid inputs.

Vx Vy P(X) VAN Sprog(X, Y) — Q(Xa y)

® P(x) is the pre-condition predicate (100 > x > 0) over variables x.

* Suog(x,y) is the predicate representing prog which accepts x as its input, and
terminates with output y.

® Q(x,y) is the post-condition predicate (y >= x + 1) over variables x, y.

e How to prove correctness for all inputs x? Search for counterexample x where

1 does not hold, that is
Ix 3y —(P(x) A Sprog(x,7)) — Q(x,¥))
= JIxJy P(x) A Sprog(x,57) N Q(x,y) (simplification)
Note that P(x) is always true if a program does not have a pre-condition.

Logic formula simplification: https://en.wikipedia.org/wiki/Logical_equivalence

e
COMP6131 Software Security Analysis 2025

13

https://en.wikipedia.org/wiki/Logical_equivalence

Satisfiability Checking for Code Verification

Checking whether the logical formula v is satisfiable by an SMT solver.

assume (100 > x > 0);

£ 10) { translate feed into
if(x >
vo=x+ 1 = 3x3y P(x) A Sprog(x,y)) A =Q(x,) = SMT
} logical formula v Solver
else {
y = 10;
}
assert(y >= x + 1);
| 14

COMP6131 Software Security Analysis 2025

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

Satisfiability Checking for Code Verification

Checking whether the logical formula v is satisfiable by an SMT solver.

assume (100 > x > 0);

) translate feed into
1f(xy>=1z)+{1; = 3x 3y P(x) A Sorag(x,¥)) A ~Q(x, y) —> SMT
} logical formula v Solver
else {
y = 10;
} .
assert fails!

assert(y >= x + 1);
solver returns sat and couterexample x = 10 found!

SMT: https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

__| 14
COMP6131 Software Security Analysis 2025

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

Translating Code into Logical Formulas
* How to extract P(x)A Sprog(x,y)) A= Q(x,y) from code?

- __|]
COMP6131 Software Security Analysis 2025

15

Translating Code into Logical Formulas

* How to extract P(x)A Sprog(x,y)) A= Q(x,y) from code?
e First-order logical formulas

® The formulas of predicate logic are constructed from propositional, predicate
and object variables by using logical connectives and quantifiers (This class)

e Translation
* Translating SVFStmts of each program path (from Assignment-2) into a logical
formula ¢, and then proving the non-existence of counterexamples (or check
unsat) for each path.
* Vpath € prog checking(Ypain)
Ypatn: Ix P(x) A ((x > 10) A (y=x+1)) A—=Q(x,y) (if branch)
Vpath,: 3x P(x) A ((x < 10) A (y = 10)) A—Q(x,y) (else branch)

e 15

COMP6131 Software Security Analysis 2025

Translating Code into Logical Formulas

* How to extract P(x) A Sprog(x,y)) A ~Q(x,y) from code?
¢ First-order logical formulas
* The formulas of predicate logic are constructed from propositional, predicate
and object variables by using logical connectives and quantifiers (This class)
e Translation of program paths
* Translating SVFStmts of each program path (from Assignment-2) into a logical
formula ¢, and then proving the non-existence of counterexamples (or check
unsat) for each path.
* Vpath € prog checking(Ypatn)
Vpath :3X(100 > x > 0) A ((x > 10) A (y=x+ 1)) A=(y >x+1) (if branch)
Vpath, 3X(100 > x > 0) A ((x < 10) A (y = 10)) A=(y >x+1) (else branch)
® pan, : has a counterexample x = 10!!

e 16
COMP6131 Software Security Analysis 2025

Translating Code into Logical Formulas

* How to extract P(x) A Sprog(x,y)) A ~Q(x,y) from code?
* First-order logical formulas
* The formulas of predicate logic are constructed from propositional, predicate
and object variables by using logical connectives and quantifiers (This class
e Translation of program paths
* Translating SVFStmts of each program path (from Assignment-2) into a logical
formula ¢, and then proving the non-existence of counterexamples (or check
unsat) for each path.
* Vpath € prog checking(Ypatn)
Vpath :3X(100 > x > 0) A ((x > 10) A (y=x+ 1)) A=(y >x+1) (if branch)
Vpath, 3X(100 > x > 0) A ((x < 10) A (y = 10)) A=(y >x+1) (else branch)
® pan, : has a counterexample x = 10!!
* Manual translation of C statements to logic expressions via Z3 theorem prover
APls (z3Mgr.h/cpp) (Lab-Exercise-2)
e Automatic translation of SVFIR to logic expressions during control-flow
reachability analysis (Assignment-2)

e
COMP6131 Software Security Analysis 2025

)

16

Proving Non-Existence of Counterexamples and Closed-World
Programs

* Proving unsat of P(x) A Sprog(x,y) A ~Q(x,y), otherwise, there exists at least
one counterexample by the solver.

e |f the program operates in a closed-world (value initialisations are fixed and
there are no inputs from externals such as main’s arguments, like some tests
in Exercise-2). For closed world programs, the assertion verification can be
done by directly checking satisfiability (P(x) A Sprog(x,y) A Q(x,y)), essentially
the same as checking the non-existence of counterexamples.

I —— 17

COMP6131 Software Security Analysis 2025

Theorem Prover Tools

¢ Interactive theorem provers (proof assistants)
* Formal proofs by human-machine collaboration via expressive specification
languages; may not work directly on source code.
® For example, ACL2, Coq, Isabelle, and HOL provers.
¢ Automated theorem provers
® Proof automation (but less expressive than interactive provers); can work on
real-world source code.
® For example, Z3 and CVC.

Theorem prover tools: https://en.wikipedia.org/wiki/Theorem_prover

e
COMP6131 Software Security Analysis 2025

18

https://en.wikipedia.org/wiki/Theorem_prover

Automated Theorem Provers
A prover/solver checks if a formula ¢(P{prog} Q) is satisfiable (SAT).

e If yes, the solver returns a model m, a valuation of x,y, z of prog that satisfies

¥ (i.e., m makes v true).
¢ Otherwise, the solver returns unsatisfiable (UNSAT)
SAT vs. SMT solvers

e SAT solvers accept propositional logic (Boolean) formulas, typically in the
conjunctive normal form (CNF).

e SMT (satisfiability modulo theories) solvers generalize the Boolean
satisfiability problem (SAT), and accept both propositional logic and more
expressive predicate logic formulas.

* 73 Automated Theorem Prover, a cross-platform satisfiability modulo theories
(SMT) solver developed by Microsoft (This course).

Z3: https://github.com/Z3Prover/z3/wiki#background
|
COMP6131 Software Security Analysis 2025

19

https://github.com/Z3Prover/z3/wiki#background

Code to Logic Expressions with Z3 Theorem Prover
(Week 4)

Yulei Sui

School of Computer Science and Engineering
University of New South Wales, Australia

- __|]
COMP6131 Software Security Analysis 2025

20

Z3 Theorem Prover
e 73 is a Satisfiability Modulo Theories (SMT) solver from Microsoft Research.
e Targeted at solving problems in software verification and software analysis.
¢ Main applications are static checking, test case generation, and more ..

VB .
= gf'»g A

Hardware verification Software analysis/testing Architecture Modeling

i

Geometrical solving Biological analysis Hybrid system analysis

https://www.microsoft.com/en-us/research/project/z3-3/

COMP6131 Software Security Analysis 2025

21

https://www.microsoft.com/en-us/research/project/z3-3/

Z3 Framework

Theories

Bit-Vectors
Rewriting
Simplification Arithmetic

Arrays

E-matching Core Theory S
artial orders

Tupl
SAT solver

COMP6131 Software Security Analysis 2025

Z3 is an effective tool to solve logical formulas
(Z3 expressions/constraints).

Z3 GitHub https://github.com/Z3Prover/z3.
Z3 tutorials
https://github.com/philzook58/z3_tutorial

Z3 slides https:
//github.com/Z3Prover/z3/wiki/Slides

Its SMT solver supports theories such as
fixed-size bit-vectors, arithmetic, extensional
arrays, datatypes, uninterpreted functions, and
quantifiers.

Z3 has official APIs for C, C++, Python, .NET,
etc.

Z3 solver can find one of the feasible solutions in
a set of constraints.

22

https://github.com/Z3Prover/z3
https://github.com/philzook58/z3_tutorial
https://github.com/Z3Prover/z3/wiki/Slides
https://github.com/Z3Prover/z3/wiki/Slides

Z3 Solver and Z3 Formulas

Z3 solver accepts a first-order (predicate) logical formula ¢, and outputs one of the
following results.

e sat if ¢ is satisfiable
* unsat if there is a counterexample which make v unsatisfiable
* unknown if ¢ is too complex and can not be solved within a time frame.

You play around and check the satisfiability of your Z3 constraints/formulas here:
https://jfmc.github.io/z3-play or
https://compsys-tools.ens-1lyon.fr/z3/index.php

e 23
COMP6131 Software Security Analysis 2025

https://jfmc.github.io/z3-play
https://compsys-tools.ens-lyon.fr/z3/index.php

Z3 Playground (https://jfmc.github.io/z3-play)

jfmc's Z3 Playground Acknowled

1 ; You can edit this code!
[See the Z3 repository for the original rise4fun documents] 2 ; Click here and start typing.

Getting Started with Z3: A Guide 3

Be sure to follow along with the examples by clicking the "edit" link in the comer. See what the tool says, try your own formulas, and
experiment!

Introduction

Z3 s a state-of-the art theorem prover from Microsoft Research. It can be used to check the satisfiability of logical formulas over one or more
theories. Z3 offers a compeliing match for software analysis and verification tools, since several common software constructs map directly into
supported theories.

The main objective of the tutorial is to introduce the reader on how to use Z3 effectively for logical modeling and solving. The tutorial provides
some general background on logical modeling, but we have to defer a full introduction to first-order logic and decision procedures to text-
books.

Z3is a low level tool. It is best used as a component in the context of other tools that require solving logical formulas. Consequently, Z3
exposes a number of AP facilities to make it convenient for tools to map into Z3, but there are no stand-alone editors or user-centric facilities
for interacting with Z3. The language syntax used in the front ends favor simplicity in contrast to linguistic convenience.

Ba:

The Z3 input format is an extension of the one defined by the SMT-LIB 2.0 standard. A Z3 script is a sequence of commands. The help
command displays a list of all available commands. The command echo displays a message. Internally, Z3 maintains a stack of user provided
formulas and declarations. We say these are the assertions provided by the user. The command declare-const declares a constant of a
given type (aka sort). The command declare-fun declares a function. In the following example, we declared a function that receives an integer
and a boolean, and returns an integer.

Commands

(echo "starting Z3...") STyt

(declare-const a_Int)
(declare-fun f (Int Bool) Int)

24
COMP6131 Software Security Analysis 2025

https://jfmc.github.io/z3-play

Z3’s Logical Formula (Constants, Check-Sat and Evaluation)
The Z3 input format (formula format) is an extension of the SMT-LIB 2.0 standard.
A Z3 formula expression (z3: : expr) has the following keywords:

echo displays a message

declare-const declares a constant of a given type (a.k.a sort)
declare-fun declares a function

assert adds a formula into the Z3 internal stack

check-sat determines whether the current formulas on the Z3 stack are
satisfiable or not

get-model is used to retrieve an interpretation (one solution) that makes all
formulas on the Z3 internal stack true

eval evaluates a variable/expression produced by a model when the formulas
is satisfiable.

SMT-LIB 2.0: https://homepage.cs.uiowa.edu/~tinelli/papers/BarST-SMT-10.pdf
| 25
COMP6131 Software Security Analysis 2025

https://homepage.cs.uiowa.edu/~tinelli/papers/BarST-SMT-10.pdf

Constants, Check-Sat and Evaluation (Example)

Y (x>10) A (y=x+1)
How to represent this formula in Z3 and feed it into Z3’s solver?

- __|]
COMP6131 Software Security Analysis 2025

26

Constants, Check-Sat and Evaluation (Example)

Y (x>10) A (y=x+1)
How to represent this formula in Z3 and feed it into Z3’s solver?

(echo "starting Z3...")

(declare-const x Int) ;/// Declare an Int type variable "x"

(declare-const y Int) ;/// Declare an Int type variable "y"

(assert (> x 10)) ;/// Add the first part (x>10) of the conjunction into the solver
(assert (= y (+ x 1))) ;/// Add the second part (y==x+1) of the conjunction
(check-sat) ;/// Check whether added formulas are satisfiable.

(eval x) ;/// Evaluate the value of x when the formula is satisfiable

(eval y) ;/// Evaluate the value of y when the formula is satisfiable

0 N O g~ W N =

- __|]
COMP6131 Software Security Analysis 2025

Constants, Check-Sat and Evaluation (Example)

Y (x>10) A (y=x+1)
How to represent this formula in Z3 and feed it into Z3’s solver?

(echo "starting Z3...")

(declare-const x Int) ;/// Declare an Int type variable "x"

(declare-const y Int) ;/// Declare an Int type variable "y"

(assert (> x 10)) ;/// Add the first part (x>10) of the conjunction into the solver
(assert (= y (+ x 1))) ;/// Add the second part (y==x+1) of the conjunction
(check-sat) ;/// Check whether added formulas are satisfiable.

(eval x) ;/// Evaluate the value of x when the formula is satisfiable

(eval y) ;/// Evaluate the value of y when the formula is satisfiable

0 N O g~ W N =

Outputs of Z3’s solver:

starting Z3...

sat /// (check-sat) result

11 /// the value of x as one satisfiable solution
12 /// the value of y as one satisfiable solution

AW N =

- __|]
COMP6131 Software Security Analysis 2025

26

Z3’s Logical Formula (Uninterpreted Function)

The basic building blocks of SMT formulas are constants and uninterpreted
functions.

e An uninterpreted function has no other property (no priori interpretation)
than its signature (i.e., function name and arguments).

e An uninterpreted functions in first-order logic have no side-effects (e.g., can
not change argument values and never return different values for the same
input)

e Constants in Z3 can also be seen as functions that take no arguments.

* The details and characteristics of uninterpreted functions are ignored. This

can generalize and simplify theorems and proofs.

__|
COMP6131 Software Security Analysis 2025

27

Uninterpreted Function (Example)

(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) ;/// £(10) =1
(check-sat)

w N

- __|]
COMP6131 Software Security Analysis 2025

28

Uninterpreted Function (Example)

(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) ;/// £(10) =1
(check-sat)

w N

Outputs of Z3'’s solver:

1| sat

The solver returns sat, because £ is an uninterpreted function (i.e., all that is known about £ is its
signature), so it is possible that £ (10) = 1.

- __|]
COMP6131 Software Security Analysis 2025

28

Uninterpreted Function (Example)

(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) ;/// £(10) =1
(check-sat)

w NN =

Outputs of Z3'’s solver:

1| sat

The solver returns sat, because £ is an uninterpreted function (i.e., all that is known about £ is its
signature), so it is possible that £ (10) = 1.

(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) 3/// £(10) 1

(assert (= (f 10) 2)) ;/// £(10) =2

(check-sat)

AW NN =

COMP6131 Software Security Analysis 2025

Uninterpreted Function (Example)

(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) ;/// £(10) =1

(check-sat)

w NN =

Outputs of Z3'’s solver:

1| sat

The solver returns sat, because £ is an uninterpreted function (i.e., all that is known about £ is its
signature), so it is possible that £ (10) = 1.

(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int

(assert (= (f 10) 1)) 3/// £(10) = 1
(assert (= (£ 10) 2)) 3/// £(10) 2
(check-sat)

AW NN =

Outputs of Z3'’s solver:

1 ‘ unsat

The solver returns unsat, because £, as an uninterpreted function, can never return different values

for the same ingut. 28

COMP6131 Software Security Analysis 2025

Uninterpreted Function (Example)

Vo f(x)=1f(y) A xl=y

(declare-const x Int)

(declare-const y Int)

(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
(assert (= (f x) (£ ¥)))

(assert (not (= x y)))

(check-sat)

o O~ W NN =

- __|]
COMP6131 Software Security Analysis 2025

29

Uninterpreted Function (Example)

Vo f(x)=1f(y) A xl=y

(declare-const x Int)

(declare-const y Int)

(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
(assert (= (f x) (£ ¥)))

(assert (not (= x y)))

(check-sat)

o O~ W NN =

Outputs of Z3'’s solver:

1| sat

An uninterpreted function can have different inputs and return the same output. For example, £ can
always return 1 regardless the value of the input argument.

e 29
COMP6131 Software Security Analysis 2025

Constants as Uninterpreted Function (Example)

Pi(x>10) A (y=x+1)

(declare-fun x () Int) ;/// "x" and "y" as an uninterpreted functions
(declare-fun y () Int) ;/// Accepts no argument and return an Int
(assert (> x 10))

(assert (= y (+ x 1)))

(check-sat)

(get-model)

(o2 B B S v R S

Outputs of Z3'’s solver:

1| sat

2| (

3 (define-fun x () Int

4 11) ;/// x is evaluated to be 11 for this model
5| (define-fun y () Int

6 12) ;/// y is evaluated to be 12 for this model
71)

(declare-const x Int) can be seen as the syntax sugar for (declare-fun x () Int).
-]
COMP6131 Software Security Analysis 2025

Z3’s Logical Formula (Arithmetic)

e 73 supports majority of commonly used arithmetic operators, such as +, -, x,
/, <<, >>, <, >, &, | (The ones listed in SVFIR)

e Types of any two operands should be the same otherwise a type conversion is

needed.
¢ Never mix types in arithmetic, and always be explicit.

(declare-const a Int)
(declare-const b Float32)
(assert (= a (+ b 1)))
(check-sat)

AW N =

Outputs of Z3'’s solver:

Error: (error "line 3 column 19: Sort mismatch at argument #1 for function
(declare-fun + (Int Int) Int) supplied sort is (_ FloatingPoint 8 24)")

N

e
COMP6131 Software Security Analysis 2025

31

Z3’s Logical Formula (if-then-else Expression)

e ite(b, x, y) represents a conditional expression, where b is the condition,
ite returns x if b is evaluated true, otherwise y is returned

¢ Used for comparison or branches

1| (ite (and (= x!1 11) (= x!2 false)) 21 0)

The above Z3 formula evaluates (returns) 21 when x!1 is equal to 11, and x!2 is equal to false.
Otherwise, it returns 0.

e
COMP6131 Software Security Analysis 2025

32

Z3’s Logical Formula (Arrays)
Formulating a program of a mathematical theory of computation McCarthy
proposed a basic theory of arrays as characterized by the select-store axioms.
® (select a i): returns the value stored at position i of the array a;

* (store a i v):returns a new array identical to a, but on position i it contains

the value v.
e 73 assumes that arrays are extensional over select. Z3 also enforces that if
two arrays agree on all reads, then the arrays are equal.

e
COMP6131 Software Security Analysis 2025

33

Z3’s Logical Formula (Arrays)
Formulating a program of a mathematical theory of computation McCarthy
proposed a basic theory of arrays as characterized by the select-store axioms.
® (select a i): returns the value stored at position i of the array a;
® (store a i v): returns a new array identical to a, but on position i it contains
the value v.
e 73 assumes that arrays are extensional over select. Z3 also enforces that if
two arrays agree on all reads, then the arrays are equal.
The following formulas store y to the x-th position of array a and
then load the value at a’s x-th position to z

1| (declare-const x Int)

2| (declare-const y Bool)

3| (declare-const z Bool)

4| (declare-const a (Array Int Bool)) ;/// an array of Bools with Int as the indices
5| (assert (= (store a x y) a)) ;/// alx]l ==y

6| (assert (= (select a x) z)) 3/// z == alx]

COMP6131 Software Security Analysis 2025

33

Z3’s Logical Formula (Scopes)
Z3 maintains a global stack of declarations and assertions via push and pop

e push: creates a new scope by saving the current stack size.

® pop: removes any assertion or declaration performed between it and the
matching push.

The check-sat command always operates on the current global stack.

COMP6131 Software Security Analysis 2025

34

Z3’s Logical Formula (Scopes)
Z3 maintains a global stack of declarations and assertions via push and pop

e push: creates a new scope by saving the current stack size.

® pop: removes any assertion or declaration performed between it and the
matching push.

The check-sat command always operates on the current global stack.

1| (declare-const x Int)

2| (declare-const a (Array Int Int)) /// an array of Ints

3| (push)

4| (assert (= (store a 1 10) a)) 3/// all1] == 10

5| (assert (= (select a 1) x)) 3/// x == a[1]

6| (assert (= x 20)) 3/// x == 20

7| (check-sat)

8| (pop) ;/// remove the three assertions
9| (assert (= x 10)) 3/// x == 10

10| (check-sat)

What is the output of the solver?
|
COMP6131 Software Security Analysis 2025

34

Today’s class

Lab-Exercise-2
Manual Translation

C Code — —Z

N

<: Today's class
Translation

[I_ - Q sat
| Z3Manager , SSE ! |Logical Formulas
SVFStmt/ICFGNode | _RuIeS_)) I\ ~1|(z3 Expressions) Z3 Solver
S . o

-

Assignment-1 N .

Automated
Translation

Assignment-2

unsat

> Control-Flow
LLVM/ Reachablity

Clang Analysis

path1 path2---

® We introduce Z3 solver, Z3 constraint format Z3Mgr APIs used for lab/assignment in this course.

® We learn how to manually translate C source code into logical formulas (Z3 constraints/expressions).

® Then, we will demonstrate examples for manual translation from code to Z3 constraints.

COMP6131 Software Security Analysis 2025

35

Translating Code to Z3 Formulas
We provide Z3Mgr and its subclass Z3Examples (wrapper classes to manipulate Z3
APIs) to generate Z3 formulas or so-called z3: : expr.

Z3Examples API

Meanings

Create a z3 expr given a string name

23::expr getZ3Expr(std::string);

z3::expr getZ3Expr(u32_t); Create a z3 expr given an integer

z3::expr getCtx().int_val(u32_t); Create a z3 expr given an integer

z3::expr getMemObjAddress(std::string); Create a memory object in program

z3::expr getGepObjAddress(z3::expr, u32_t); | Create a field object with an offset of an aggregate

void addToSolver(z3::expr) ;

Add a Z3 expression/formula to the solver

void resetSolver();

Clean all formulas in the the solver

check_result solver.check();

Check if a formula is satisfiable; return sat/unsat/unknown.

bool checkNegateAssert(Z3Mgr, z3::expr);

Check negated assert return true if no counterexample

z3::expr getEvalExpr(z3::expr);

Evaluate an expression to a value based on a model.

void printExprValues();

Print the values of all expressions in the solver

void printZ3Exprs();

Print all z3 formulas in the solver

More details, refer to

https://github.com/SVF-tools/Teaching-Software-Verification/wiki/SVF-APIs
e 36
COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/Teaching-Software-Verification/wiki/SVF-APIs

Z3Mgr: :getEvalExpr

z3::expr Z3Mgr::getEvalExpr(z3::expr e) {
z3::check_result res = solver.check();
assert(res != z3::unsat && "unsatisfied constraints!");
z3::model m = solver.get_model();
return m.eval(e);

}

The Z3Mgr: : getEvalExpr method checks if the constraints added to the Z3 solver

are satisfiable. If they are, it retrieves the model that satisfies these constraints
and evaluates the given complex expression e within this model, returning the

evaluated result as one of the following:
e Boolean Expression: is_true() or is_false()

¢ Integer Expression: is_numeral (), get numeral int64()

* Real Expression: get_numeral_double ()
e String Expression: get_numeral_string()

COMP6131 Software Security Analysis 2025

37

APIs for Lab-Exercise-2 vs APIs for Assignment-2

Lab-Exercise-2 (Z3Examples & Z3Mgr) Assignment-2 (Z3SSEMgr & Z3Mgr)
Z3Examples: :getZ3Expr (u32_t val) Z3Mgr: :getZ3Expr (u32_t id)
Get the z3 expression from a constant integer Get the z3 expression from an SVFVar ID
Z3Examples: : getMemObjAddress (string name) Z3SSEMgr: : getMemObjAddress (u32_t id)
Get the memory object address from a string name | Get the memory object address from SVFVar ID
Z3Examples: :getGepObjAddress Z3SSEMgr: : getGepObjAddress
Get object address from a pointer and an offset Get object address from a pointer and an offset
Z3Examples: :addToSolver(z3: :expr e) Z3SSEMgr: :addToSolver(z3: :expr e)
Add expr e to solver Add expr e to solver

Shared APIs

Z3Mgr: :printZ3Exprs (): Print all zZ3 expressions

Z3Mgr: :printExprValues(): Print all expressions’ values after evaluation

Z3Mgr: :getVirtualMemAddress(u32_t id) and Z3Mgr::isVirtualMemAddress(u32_t id)
The id of an object (0bjVar) in SVFIR will be marked using an AddressMask (0x7f000000)
to mimic the virtual memory address (note that this is not a physical runtime address but an abstract address)

getInternalID(u32_t) will unmarsk a virtual address to get its original ObjVar’s id.

Z3Mgr: :storeValue (expr loc, expr value): stores a value to address loc.

Z3Mgr: :loadValue (expr loc): loads a value from address loc.

e
COMP6131 Software Security Analysis 2025

Translation Rules

expr p = getZ3Expr("p") expr q = getZ3Expr("q") expr r = getZ3Expr("r") expr x = getZ3Expr("x")

SVFStmt C-Like form Operations
AddrStmt (constant) p=c addToSolver(p == c);
AddrStmt (mem allocation) p = alloc addToSolver(p == getMemObjAddress("alloc");)
CopyStmt p=4q addToSolver(p == q);
LoadStmt pP=%*q addToSolver(p == loadValue(q));
StoreStmt *p=q storeValue(p, q);
GepStmt p=&(q— i) orp = &q[i] | addToSolver(p == getGepObjAddress(q,i));
PhiStmt r=7phi(l;:p, {>:q) if (executed from 14) addToSolver (p==r) ;
if (executed from 1p) addToSolver(g==r) ;
BranchStmt if(x) r = p elser = q | addToSolver(r == ite(x, p, q));
UnaryOPStmt -p addToSolver(!p);
BinaryOPStmt r = p ® q BinaryOPStmt:0pCode | addToSolver(r == p ® q);
CmpStmt r = p ® q CmpStmt::Predicate addToSolver(r == ite(p ® q, true, false));
CallPE/RetPE r=1£(...,q,...) f(...,p,...){... returnz}
CallPE p=4q solver.push(); addToSolver(p == q);
RetPE p=r expr ret = getEvalExpr(r); solver.pop();
addToSolver(p == ret);

e 39
COMP6131 Software Security Analysis 2025

Translating Code to Z3 Formulas (Scalar Example)
The target program code needs to be in SSA form (e.g., SVFIR).
e Top-level variables can only be defined once
°*a=1;a=2;—al=1;a2=2;
* Memory objects can only be modified/read through top-level pointers at
StoreStmt and LoadStmt.
® p = &a; *p = r; The value of a can only be modified/read via dereferencing p.

- __|]
COMP6131 Software Security Analysis 2025

40

Translating Code to Z3 Formulas (Scalar Example)
The target program code needs to be in SSA form (e.g., SVFIR).
e Top-level variables can only be defined once
°*a=1;a=2;—al=1;a2=2;
* Memory objects can only be modified/read through top-level pointers at
StoreStmt and LoadStmt.
® p = &a; *p = r; The value of a can only be modified/read via dereferencing p.

int main() {

int a;

int b;

a = 0;
b=a+1;
assert (b>0);

C code

expr a = getZ3Expr("a"); // int a;
expr b = getZ3Expr("b"); // int b;

// a = 0;

addToSolver (a==getZ3Expr(0));

// b = a+1;

addToSolver (b==(a+getZ3Expr(1)));

/// check negated assert cond (b <= 0)
/// for checking only, not added to so
/// return true if no counterexample
res = checkNegateAssert (b>getZ3Expr (0)

—>

Lver

Translator

(declare-fun a () Int)
(declare-fun b () Int)
(assert (= a 0))

(assert (= b (+ a 1)))

check unsat b <= 0
against solver formulag

Z3 Formulas

COMP6131 Software Security Analysis 2025

Z3
solver

40

Translating Code to Z3 Formulas (Memory Operation Example)

* Each memory object has a unique ID and allocated with a virtual memory address

® |n our modeling, the virtual address starts from 0x7f......

+ 1D (i.e., 2130706432 + ID in decimal)

® Memory operations will be through store and load values from loc2ValMap, an Z3 array.

= nany . 3 .
Zipi i _ g::;ggipig,,i,,;f ;; iit*xp, (declare-fun p () Int)
int main() { P & P ’ ’ (declare-fun loc2ValMap ()
int* p; // p = malloc(..); (Array Int Int))
. & expr m = getMemObjAddress("mallocl"); v
int x; addToSolver(p == m): (declare-fun x () Int)
77 wp n 5, P : (assert (= p 2130706435))
p = malloc(..); N ’ . N (assert (= x (select
*p = 5; j;(’ie‘_lai;?(p’ getZ3Expr (5)); (store loc2ValMap 2130706435 5
= %p: ?
X I addToSolver(x == loadValue(p)); 2130706435)))
assert (x==5);
/// check negated assert cond (x != 5)
} . check unsat x != 5
/// return true if no counterexample against solver formulas
res = checkNegateAssert (x==getZ3Expr(5))}; 8
C code Translator Z3 Formulas
__| 41

COMP6131 Software Security Analysis 2025

What’s next?

e (1) Understand Z3 formula format in the slides

® (2) Understand z3Mgr class in the GitHub Repository of
Software-Security-Analysis

e (3) Start working on the Quiz-2 on WebCMS

® (4) Start working on Lab-Exercise-2

®* Remember to git pull or docker pull to get the latest code template.
® You will implement a manual translation from code to Z3 formulas using Z3Mgr
and Z3Examples in for code assertion verification.

__|
COMP6131 Software Security Analysis 2025

42

