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Summary

Regular expressions

Myhill-Nerode theorem

Context-free languages

Mealy machines

LTL: Logic for transition systems
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Context-free grammars

Regular languages can be specified in terms of finite automata that
accept or reject strings, equivalently, in terms of regular
expressions, which strings are to match.
Grammars are a generative means of specifying sets of strings.
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Context-free grammars (CFG): A way of generating
words

Ingredients of a CFG:

({variables}, {terminals}, {productions (or rules)}, start symbol)

The start symbol is a special variable.
A CFG generates strings over the alphabet Σ = {terminals}.

Example

G = ({A,B}, {0, 1},R,A) where R consists of three rules:
A → 0A 1
A → B
B → ε
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How to generate strings using a CFG

1. Set w to be the start symbol.

2. Choose an occurrence of a variable X in w if any, otherwise
STOP.

3. Pick a production whose lhs is X , replace the chosen
occurrence of X in w by the rhs.

4. GOTO 2.

Example

G = ({A,B}, {0, 1}, {A→ 0A 1 | B, B → ε},A) generates
{0i 1i : i ≥ 0}.

A ⇒ 0A 1
⇒ 0 0A 1 1
⇒ 0 0B 1 1
⇒ 0 0 ε 1 1 = 02 12

Such sequences are called derivations.
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Formal definition
A context-free grammar is a 4-tuple G = (V ,Σ,R, S) where

V is a finite set of variables (or non-terminals)

Σ (the alphabet) is a finite set of terminals

R is a finite set of productions. A production (or rule) is an
element of V × (V ∪ Σ)∗, written A→ w .

S ∈ V is the start symbol.

We define a binary relation ⇒ over ({V ∪ Σ})∗ by: for each
u, v ∈ ({V ∪ Σ})∗, for each A→ w in R

u A v ⇒ u w v

The language generated by the grammar, L(G ), is
{w ∈ Σ∗ : S ⇒∗ w}.

A language is context-free if it can be generated by a CFG.
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Examples

Example

Well-balanced parentheses: generated by ({S}, { ( , ) },R, S)
where R consists of

S → ( S ) |S S | ε

E.g. ( ( ) ( ( ) ) ) ( )
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Examples

Example

Inductively defined syntax:

Well-formed formulas

L
Regular expressions

Code specifications

WFFs: Generated by ({ϕ},Σ,R, ϕ) where
Σ = Prop ∪ {>,⊥, (, ),¬,∧,∨,→,↔} and R consists of

ϕ → >|⊥ |P | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ↔ ϕ)
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Examples

Example

A small English language

〈sentence〉 → 〈noun-phrase〉 〈verb-phrase〉
〈noun-phrase〉 → 〈cmplx-noun〉 | 〈cmplx-noun〉 〈prep-phrase〉
〈verb-phrase〉 → 〈cmplx-verb〉 | 〈cmplx-verb〉 〈prep-phrase〉
〈prep-phrase〉 → 〈prep〉 〈cmplx-noun〉
〈cmplx-noun〉 → 〈article〉 〈noun〉
〈cmplx-verb〉 → 〈verb〉 | 〈verb〉 〈noun-phrase〉

〈article〉 → a | the
〈noun〉 → boy | girl | flower
〈verb〉 → touches | like | see
〈prep〉 → with
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Examples

Example

A small English language

〈sentence〉 ⇒ 〈noun-phrase〉 〈verb-phrase〉
⇒ 〈cmplx-noun〉 〈prep-phrase〉 〈verb-phrase〉
⇒ 〈article〉 〈noun〉 〈prep-phrase〉 〈verb-phrase〉
⇒ a girl 〈prep〉 〈cmplx-noun〉 〈verb-phrase〉
⇒ a girl with 〈cmplx-noun〉 〈verb-phrase〉
⇒ a girl with 〈article〉 〈noun〉 〈verb-phrase〉
⇒ a girl with a flower 〈verb-phrase〉
⇒ a girl with a flower 〈cmplx-verb〉
⇒ a girl with a flower 〈verb〉 〈noun-phrase〉
⇒ a girl with a flower likes 〈cmplx-noun〉
⇒ a girl with a flower likes 〈article〉 〈noun〉
⇒ a girl with a flower likes the boy
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Regular languages vs Context-free languages

A CFG is right-linear if every rule is either of the form R → wT or
of the form R → w where w ranges over strings of terminals, and
R and T over variables.

Theorem

A language is regular if and only if it is generated by a right-linear
CFG.
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Parse trees

Each derivation determines a parse tree.
Parse trees are ordered trees: the children at each node are ordered.
The parse tree of a derivation abstracts away from the order in
which variables are replaced in the sequence.

⇒ a T aS

⇒ a S a

⇒ a b T b a

⇒ a b c b a

S

a T a

S

b T b

c
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Properties of CFLs

Context-free languages are closed under union

Context-free languages are not closed under complement nor
intersection
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Properties of CFLs

Context-free languages are closed under union

Context-free languages are not closed under complement nor
intersection
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Pushdown automata

CFLs can be recognized by Pushdown automata:

Non-deterministic finite automaton, PLUS

Stack memory:

Infinite capacity for storing inputs
Can recover top-most memory item to influence transitions
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Summary

Regular expressions

Myhill-Nerode theorem

Context-free languages

Mealy machines

LTL: Logic for transition systems
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Mealy machines

A Mealy machine is a finite state deterministic transducer.
Formally, a tuple (Q,Σ, Γ, δ, q0) where

Q is a finite set of states

Σ is the input alphabet

Γ is the output alphabet

δ : Q × Σ→ Q × Γ is the transition function

q0 ∈ Q is the start state.

DFAs accept languages, Mealy machines compute
(length-preserving) functions f (M) : Σ∗ → Γ∗
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Formally, a tuple (Q,Σ, Γ, δ, q0) where
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Example
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Applications

Mealy machines model input/output systems:

“Black-box” investigation

Substitution cipher

Circuit analysis
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Moore machines

Moore machines historically predate Mealy machines

Outputs occur at states rather than transitions

⇒ Better for synchronicity
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Summary

Regular expressions

Myhill-Nerode theorem

Context-free languages

Mealy machines

LTL: Logic for transition systems
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Models of computation

Transition systems model a rudimentary form of computation

We would like to reason about them:

Every request is eventually responded to

The traffic light is not always red

The brakes are applied until the pedal is released

If ϕ holds in a state, then ψ will hold in the successor state
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Specifications for transition systems

Model:

Transition system with start state (S ,→, s0)

Set Prop of propositional variables

A labelling Λ : S → Pow(Prop) identifying which
propositions hold in which state

NB

With propositions such as “just took transition labelled x” or “in a
final state” we can cover other types of transition systems
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First-order logic approach
Vocabulary:

Domain of discourse: States
A binary predicate, T
A constant, s0
Unary predicates P(x) for each P ∈ Prop

Example

The traffic light is never always red

could be specified as:

∀x∃y((y > x) ∧ ¬isRed(y)

where

y > x := (x → y) ∨ ∀z .(T (x , z)→ (y > z))
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First-order logic pros and cons

Pros:

Very expressive specification language

Satisfiability is decidable

Cons:

“Readability” can be an issue

Satisfiability checking is of non-elementary complexity
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Linear Temporal Logic

Temporal logics, for reasoning about time, were developed around
1900

Linear Temporal Logic (LTL) introduced in 1970s by Pnueli.

LTL is an extension of Propositional Logic with the ability to work
with state transitions

LTL is a restriction of Predicate Logic with limitations on various
constructs such as quantifiers
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LTL pros and cons

Pros:

Logical language close to English

Satisfiability checking is (relatively) efficient

Quite expressive (same as FO on paths)

Cons:

Does not take “branching” into account (see CTL)

Satifiability is still computationally difficult
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LTL Syntax
The formulas of LTL are defined recursively as follows:

>, ⊥, p (p ∈ Prop) are all formulas;

If ϕ, ψ are formulas then so are:

¬ϕ
(ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ)
Xϕ [ϕ holds in the neXt state]
ϕUψ [ϕ holds Until ψ holds]

NB

X and U are known as temporal operators.

Example

Some formulas:

>U(p ∧ q)

X(p ∨ (qU¬p))
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LTL Syntax: Derived operators

Three additional common operators:

Fϕ: eventually (in the Future) ϕ, for >Uϕ

Gϕ: always (Globally) ϕ, for ¬(>U(¬ϕ))

ϕWψ: ϕ Weakly until ψ, for (Gϕ) ∨ (ϕUψ)

ϕRψ: ϕ Releases ψ, for ¬(¬ϕU¬ψ)
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More examples

Example

Every request is eventually responded to: G(req→ Fresp)

The traffic light is not always red: ¬Gred

The brakes are applied until the pedal is released:
brakeU(¬pedal)

If ϕ holds in a state, then ψ will hold in the successor state:
ϕ→ Xψ
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LTL Semantics
LTL is linear: it is interpreted by runs in the system.

Let ρ = s1, s2, . . . be a run in the transition system starting at s1.
Let ρi denote the sub-run of ρ starting at i .
We define what it means for ρ to satisfy an LTL formula ϕ,
written ρ |= ϕ, recursively as follows:

ρ |= > for all runs, ρ 6|= ⊥ for any run

ρ |= p if p is true in s1
ρ |= ¬ϕ if it is not the case that ρ |= ϕ

ρ |= ϕ ∧ ψ if ρ |= ϕ and ρ |= ψ

ρ |= ϕ ∨ ψ if ρ |= ϕ or ρ |= ψ

ρ |= ϕ→ ψ if it is the case that if ρ |= ϕ then ρ |= ψ

ρ |= ϕ↔ ψ if ρ |= ϕ if and only if ρ |= ψ

ρ |= Xϕ if ρ2 |= ϕ

ρ |= ϕUψ if there exists an i such that ρj |= ϕ for all
1 ≤ j < i and ρi |= ψ
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Example
Example

s0: p s1: p, q s2: p, r

Consider the run ρ = s0, s1, s2, s1, s2, s1, . . .. Does ρ satisfy the
following formulas:

Gp? Yes

Xq? Yes

qUr? No

(Xq)Wr? Yes

FGq? No

GFq? Yes

XGXXq? Yes
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Semantics continued

A transition system with start state s0 satisfies an LTL formula ϕ
if ρ |= ϕ for all runs starting at s0.
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Example
Example

s0: p s1: p, q s2: p, r

Does the system satisfy the following formulas:

Gp? Yes

Xq? Yes

(Xq)Wr? Yes

GFq? No: e.g. s0, s1, s2, s2, s2 . . .

XGXXq? No
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s0: p s1: p, q s2: p, r

Does the system satisfy the following formulas:
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Relation to earlier concepts

ϕ is a preserved invariant: ϕ→ Xϕ

The invariant principle: (ϕ→ Xϕ)→ Gϕ

Safety: Gϕ (also FGϕ)

Liveness: Fϕ (also GFϕ)
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Deciding satisfiability I

On finitely presented transition systems, to decide if the system
satisfies ϕ:

Use ϕ to create a Büchi automaton (NFA for infinite words)

Check if all runs of the system are accepted by the automaton
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Deciding satisfiability II
On finitely presented transition systems, to decide if the system
satisfies ϕ:

Set up a two-player game: Verifier (System) vs Falsifier
(Environment):

Verifier is trying to show the system satisfies the formula,
Falsifier is trying to show the system does not satisfy the
formula

Game is played on States× Subformulas
Players choose the next state or subformula to move to, which
player chooses depends on the formula type, e.g.

Current formula is Xϕ, then Falsifier chooses a successor state
and the formula becomes ϕ.
Current formula is ϕ ∨ ψ, then Verifier chooses a subformula ϕ
or ψ and the state remains the same.
Current formula is ¬ϕ, then Verifier and Falsifier swap roles
and the formula becomes ϕ in the current state.

Game continues until a propositional variable is reached,
winner determined by whether that variable holds in the
current state.69



Example
Example

s0: p s1: p, q s2: p, r

Show that this system does not satisfy (Xq) ∧ (XXr)

Current state: s0

ϕ ∧ ψ: Falsifier chooses subformula: say (XXr)

Xϕ: Falsifier chooses successor: say s1. Current formula: Xr

Xϕ: Falsifier chooses successor: say s1. Current formula: r

r is not true in s1 so Falsifier wins
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Expressiveness

In general, first-order logic is more expressive than LTL: e.g. LTL
cannot express

on all runs: p → ( there is a successor such that: q)

On transition systems that are just paths:

Theorem (Kamp,Pnueli)

On linear transition systems, every First-order formula is logically
equivalent to a formula in LTL.
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Summary

Regular expressions

Myhill-Nerode theorem

Context-free languages

Mealy machines

LTL: Logic for transition systems
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