9a. Exponential Time Hypothesis

COMP6741: Parameterized and Exact Computation

Serge Gaspers1,2

1 School of Computer Science and Engineering, UNSW Sydney, Australia
2 Decision Sciences, Data61, CSIRO, Australia

Semester 2, 2018
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
SAT

Input: A propositional formula F in conjunctive normal form (CNF)
Parameter: $n = |\text{var}(F)|$, the number of variables in F
Question: Is there an assignment to $\text{var}(F)$ satisfying all clauses of F?

k-SAT

Input: A CNF formula F where each clause has length at most k
Parameter: $n = |\text{var}(F)|$, the number of variables in F
Question: Is there an assignment to $\text{var}(F)$ satisfying all clauses of F?

Example:

$$(x_1 \lor x_2) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$
Algorithms for SAT

- Brute-force: $O^*(2^n)$

...after 50 years of SAT solving (SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)

Fastest known algorithm for SAT:

$O^*(2^n \cdot (1 - \frac{1}{O(\log \frac{m}{n})}))$, where m is the number of clauses

[Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]

However: no $O^*(1.9999^n)$ time algorithm is known

Fastest known algorithms for 3-SAT:

$O^*(1.3303^n)$ deterministic [Makino, Tamaki, Yamamoto, 2013]

and $O^*(1.3071^n)$ randomized [Hertli, 2014]

Could it be that 3-SAT cannot be solved in $2^{o(n)}$ time?

Could it be that SAT cannot be solved in $O^*((2^-\epsilon n)$ time for any $\epsilon > 0$?
Algorithms for SAT

- Brute-force: $O^*(2^n)$
- ... after > 50 years of SAT solving
 (SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)

However: no $O^*(1.9999^n)$ time algorithm is known.

Fastest known algorithms for 3-SAT:
- $O^*(1.3303^n)$ deterministic [Makino, Tamaki, Yamamoto, 2013]
- and $O^*(1.3071^n)$ randomized [Hertli, 2014]

Could it be that 3-SAT cannot be solved in $2^{o(n)}$ time?

Could it be that SAT cannot be solved in $O^*((2−\epsilon)n)$ time for any $\epsilon > 0$?
Algorithms for SAT

- **Brute-force:** $O^*(2^n)$

... after > 50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)

- fastest known algorithm for SAT: $O^*(2^n \cdot (1 - 1/O(\log m/n)))$, where m is the number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]

- However: no $O^*(1.9999^n)$ time algorithm is known

- fastest known algorithms for 3-SAT: $O^*(1.3303^n)$ deterministic [Makino, Tamaki, Yamamoto, 2013] and $O^*(1.3071^n)$ randomized [Hertli, 2014]
Algorithms for SAT

- Brute-force: $O^*(2^n)$
- ... after > 50 years of SAT solving
 (SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)
- fastest known algorithm for SAT: $O^*(2^n \cdot (1 - 1/O(\log m/n)))$, where m is the number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]
- However: no $O^*(1.9999^n)$ time algorithm is known
- fastest known algorithms for 3-SAT: $O^*(1.3303^n)$ deterministic [Makino, Tamaki, Yamamoto, 2013] and $O^*(1.3071^n)$ randomized [Hertli, 2014]
- Could it be that 3-SAT cannot be solved in $2^{o(n)}$ time?
- Could it be that SAT cannot be solved in $O^*((2 - \epsilon)^n)$ time for any $\epsilon > 0$?
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
Are there any NP-hard problems that can be solved in $2^{o(n)}$ time?
Are there any NP-hard problems that can be solved in $2^{o(n)}$ time?

Yes. For example, **Independent Set** is NP-complete even when the input graph is planar (can be drawn in the plane without edge crossings). Planar graphs have treewidth $O(\sqrt{n})$ and tree decompositions of that width can be found in polynomial time (“Planar separator theorem” [Lipton, Tarjan, 1979]). Using a tree decomposition based algorithm, **Independent Set** can be solved in $2^{O(\sqrt{n})}$ time on planar graphs.
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
ETH and SETH

Definition 1

For each \(k \geq 3 \), define \(\delta_k \) to be the infinimum\(^1\) of the set of constants \(c \) such that \(k \)-SAT can be solved in \(O^*(2^{c \cdot n}) \) time.

Conjecture 2 (Exponential Time Hypothesis (ETH))

\[\delta_3 > 0. \]

Conjecture 3 (Strong Exponential Time Hypothesis (SETH))

\[\lim_{k \to \infty} \delta_k = 1. \]

Notes: (1) ETH \(\Rightarrow \) 3-SAT cannot be solved in \(2^{o(n)} \) time.
SETH \(\Rightarrow \) SAT cannot be solved in \(O^*((2 - \epsilon)^n) \) time for any \(\epsilon > 0 \).

\(^1\)The infinimum of a set of numbers is the largest number that is smaller or equal to each number in the set. E.g., the infinimum of \(\{ \varepsilon \in \mathbb{R} : \varepsilon > 0 \} \) is 0.
Algorithmic lower bounds based on ETH

- Suppose ETH is true
- Can we infer lower bounds on the running time needed to solve other problems?
Algorithmic lower bounds based on ETH

- Suppose ETH is true
- Can we infer lower bounds on the running time needed to solve other problems?
- Suppose there is a polynomial-time reduction from 3-SAT to a graph problem Π, which constructs an equivalent instance where the number of vertices of the output graph equals the number of variables of the input formula, $|V| = |\text{var}(F)|$.
- Using the reduction, we can conclude that, if Π has an $O^*\left(2^{|V|}\right)$ time algorithm, then 3-SAT has an $O^*\left(2^{|\text{var}(F)|}\right)$ time algorithm, contradicting ETH.
- Therefore, we conclude that Π has no $O^*\left(2^{|V|}\right)$ time algorithm unless ETH fails.
Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, \cite{Impagliazzo2001})

For each $\varepsilon > 0$ and positive integer k, there is a $O^{\ast}(2^{\varepsilon n} \cdot n)$ time algorithm that takes as input a k-CNF formula F with n variables and outputs an equivalent formula $F' = \bigvee_{i=1}^{t} F_i$ that is a disjunction of $t \leq 2^{\varepsilon n}$ formulas F_i with $\text{var}(F_i) = \text{var}(F)$ and $|\text{cla}(F_i)| = O(n)$.
Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [Impagliazzo, Paturi, Zane, 2001])

For each \(\varepsilon > 0 \) and positive integer \(k \), there is a \(O^*(2^{\varepsilon n}) \) time algorithm that takes as input a \(k \)-CNF formula \(F \) with \(n \) variables and outputs an equivalent formula \(F' = \bigvee_{i=1}^{t} F_i \) that is a disjunction of \(t \leq 2^{\varepsilon n} \) formulas \(F_i \) with \(\text{var}(F_i) = \text{var}(F) \) and \(|\text{cla}(F_i)| = O(n) \).
Corollary 5

ETH \Rightarrow 3-SAT cannot be solved in $O^*(2^{o(n+m)})$ time where m denotes the number of clauses of F.

Observation: Let A, B be parameterized problems and f, g be non-decreasing functions. Suppose there is a polynomial-parameter transformation from A to B such that if the parameter of an instance of A is k, then the parameter of the constructed instance of B is at most $g(k)$. Then an $O^*(2^{o(f(k))})$ time algorithm for B implies an $O^*(2^{o(f(g(k)))})$ time algorithm for A.
More general reductions are possible

Definition 6 (SERF-reduction)

A SubExponential Reduction Family from a parameterized problem A to a parameterized problem B is a family of Turing reductions from A to B (i.e., an algorithm for A, making queries to an oracle for B that solves any instance for B in constant time) for each $\varepsilon > 0$ such that

- for every instance I for A with parameter k, the running time is $O^*(2^{\varepsilon k})$, and
- for every query I' to B with parameter k', we have that $k' \in O(k)$ and $|I'| = |I|^{O(1)}$.

Note: If A is SERF-reducible to B and A has no $2^{o(k)}$ time algorithm, then B has no $2^{o(k')}$ time algorithm.
Vertex Cover has no subexponential algorithm

For simplicity, assume all clauses have length 3.

3-CNF Formula

$F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg v \lor w \lor x) \land (x \lor y \lor \neg z)$

For a 3-CNF formula with n variables and m clauses, we create a Vertex Cover instance with $|V| = 2^n + 3m$, $|E| = n + 6m$, and $k = n + 2m$.
Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.

3-CNF Formula $F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg v \lor w \lor x) \land (x \lor y \lor \neg z)$
Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3.

3-CNF Formula $F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg v \lor w \lor x) \land (x \lor y \lor \neg z)$

For a 3-CNF formula with n variables and m clauses, we create a Vertex Cover instance with $|V| = 2n + 3m$, $|E| = n + 6m$, and $k = n + 2m$.
Vertex Cover has no subexponential algorithm II

Theorem 7

\[\text{ETH} \Rightarrow \text{Vertex Cover} \text{ has no } 2^{o(|V|)} \text{ time algorithm.} \]

Theorem 8

\[\text{ETH} \Rightarrow \text{Vertex Cover} \text{ has no } 2^{o(|E|)} \text{ time algorithm.} \]

Theorem 9

\[\text{ETH} \Rightarrow \text{Vertex Cover} \text{ has no } 2^{o(k)} \text{ time algorithm.} \]
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
Recall: A hitting set of a set system $S = (V, H)$ is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

elts-HITTING SET

Input: A set system $S = (V, H)$ and an integer k
Parameter: $n = |V|$
Question: Does S have a hitting set of size at most k?
SETH-lower bound for Hitting Set

CNF Formula $F = (u \lor v \lor \neg y) \land (\neg u \lor y \lor z) \land (\neg v \lor w \lor x) \land (x \lor y \lor \neg z)$

Inidence graph of equivalent Hitting Set instance:

For a CNF formula with n variables and m clauses, we create a Hitting Set instance with $|V| = 2n$ and $k = n$.
Theorem 10

\[\text{SETH} \Rightarrow \text{Hitting Set has no } O^*((2 - \varepsilon)^{|V|}/2) \text{ time algorithm for any } \varepsilon > 0. \]

Note: With a more ingenious reduction, one can show that \text{Hitting Set} has no \(O^*((2 - \varepsilon)^{|V|}) \) time algorithm for any \(\varepsilon > 0 \) under SETH.
Outline

1. SAT and k-SAT
2. Subexponential time algorithms
3. ETH and SETH
4. Algorithmic lower bounds based on ETH
5. Algorithmic lower bounds based on SETH
6. Further Reading
Further Reading

