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1. (1 mark) In a decision tree a leaf node represents:

(a) a strategy

(b) a condition

(c) an outcome

(d) a random variable

(e) none of the above

Solution
c)—A leaf represents an outcome.

2. (2 marks) A decision tree with n nodes has how many branches/edges:

(a) n
2

(b) n!

(c) n

(d) n− 1

(e) none of the above

Solution
d)—Each node in a tree, except the root, has a unique parent to which
it is connected by a unique branch. Therefore there are n−1 branches.

3. (1 mark) Which of the following decision rules will always eliminate
(i.e., will never select) weakly dominated strategies:

(a) MaxiMax

(b) Maximin

(c) miniMax Regret

(d) Laplace’s

(e) none of the above

Solution
d)—Laplace’s rule is the only one that will always eliminate weakly
dominated strategies. All others may admit some weakly dominated
strategies.

Questions 4 to 8 refer to decision table below.
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s1 s2
A v 3

B 1 4

4. (1 mark) Which is the full range of values of v for which the MaxiMax
decision rule would choose A?

(a) v > 1

(b) v > 3

(c) v > 4

(d) for all values of v

(e) for no value of v

Solution
c)—v > 4.

V (A) = max{v, 3}. V (B) = max{1, 4} = 4. V (A) > V (B) iff
max{v, 3} > 4.

If v 6 3 then max{v, 3} = 3 < 4, in which case B is preferred.

If v > 3 then max{v, 3} = v, in which case A is preferred if v > 4.

Combining, A is preferred if v > 4.

5. (1 mark) Which is the maximum range of values of v for which the
Maximin decision rule would choose A?

(a) v > 1

(b) v > 3

(c) v > 4

(d) for all values of v

(e) for no value of v

Solution
a)—v > 1.

V (A) = min{v, 3}. Vm(B) = min{1, 4} = 1. Vm(A) > Vm(B) iff
min{v, 3} > 1.

If v > 3 then min{v, 3} = 3 > 1, in which case A is preferred.

If v 6 3 then min{v, 3} = v, in which case A is preferred if v > 1.
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Therefore, A is preferred if v > 3 or 1 6 v 6 3. Combining, A is
preferred if v > 1.

6. (1 mark) What is the maximum range of values of v for which Laplace’s
decision rule would choose A?

(a) v > 1

(b) v > 2

(c) v > 3

(d) for all values of v

(e) for no value of v

Solution
b)—v > 2.

VL(A) = v + 3. VL(B) = 1 + 4 = 5. VL(A) > VL(B) iff v + 3 > 5.

Therefore, v > 2.

7. (2 marks) For which range of values of v below would Savage’s miniMax
Regret decision rule choose A?

(a) v 6 1

(b) 1 6 v 6 2

(c) v > 2

(d) for all values of v

(e) for no value of v

Solution
c)—v > 2.

The regret matrix is:

s1 s2

A M − v 1

B M − 1 0

s1

r

c

s1 s2

where M = max{v, 1}.
That is:

M =

{
v if v > 1

1 if v 6 1
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The two cases are shown below:

s1 s2

A 0 1

B v − 1 0

s1

r

c

s1 s2

(v > 1)

s1 s2

A 1− v 1

B 0 0

s1

r

c

s1 s2

(v 6 1)

For miniMax Regret action A is preferred if VM(A) 6 VM(B).

If v > 1, then:

VM(A) 6 VM(B)

1 6 v − 1

v > 2

So A would be preferred for v > 2.

Alternatively, note that if v 6 1, then A is dominated by B. In this
case A would be chosen for no value of v.

Therefore the combined range is v > 2.

8. (1 mark) For which range of values of v shown below would B be weakly
dominated by A?

(a) v 6 1

(b) 1 6 v 6 3

(c) v > 4

(d) for all values of v

(e) for no value of v

Solution
e) For no values of v.

Because the value of action A in state s2 is strictly less than that of B,
it follows that A can never dominate B weakly or strictly, regardless of
the value of A in state s1.

Questions 9 to 11 refer to decision table below.
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s1 s2

A 10 2

B 3 3

s1

10

3

s1 s2

9. (2 marks) Suppose an agent was indifferent between A and B. What
would be the value of the agent’s optimism index α?

(a) 1
3

(b) 2
7

(c) 3
4

(d) 1
8

(e) none of the above

Solution
d)—1

8
.

Set:

VH(A) = VH(B)

α(10) + (1− α)(2) = α(3) + (1− α)(3)

8α + 2 = 3

∴ α = 1
8

10. (2 marks) For which values does the following tree best represent the
table above:

v4s1

v3s2
A

v2s2

v1s1

B

(a) v1 = 3, v2 = 10, v3 = 3, v4 = 2

(b) v1 = 2, v2 = 3, v3 = 10, v4 = 3

(c) v1 = 10, v2 = 3, v3 = 2, v4 = 3

(d) v1 = 3, v2 = 3, v3 = 2, v4 = 10

(e) none of the above
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Solution
d)

11. (2 marks) Which action would be chosen under miniMax Regret?

(a) both A and B

(b) neither A nor B

(c) A only

(d) B only

(e) none of the above

Solution
c)—A.

The regret table is shown below:

s1 s2

A 0 1

B 7 0

s1

0.0

7.0

s1 s2 M

1

7

The maximum regret of A is less than that of B. Hence the miniMax
Regret solution is A.
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Questions 12 to 19 refer to the diagram below.

9

4
1

10

m
P

D

S

Alice plays football and finds herself in the situation shown above. Alice
(blue #10), who has the ball, and a teammate (blue #9), are trying to
score against an opposition defender (red #4) and goal-keeper (yellow
#1). Suppose Alice has three actions to choose from:

P pass to her team-mate (blue #9) to shoot;

D dribble towards goal then shoot; or

S shoot from where she is.

Alice believes that her team’s chances of scoring if she passes to her
team-mate are 3 in 10. The chances of scoring if she dribbles toward
goal before shooting are 5 in 10. Her chances of scoring by shooting
from where she is are 2 in 10.

There is the possibility that the goal-keeper (yellow #1) might move
(m) toward the ball as shown, in which case the chances of scoring
by passing and shooting would improve respectively to 5, 3, and the
chances of scoring if she dribbles would be reduced to 1.

Solution
The corresponding decision and regret tables for her team’s chances of
scoring are shown below:
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m m

P 3 5

D 5 1

S 2 3

m

3

5

2

m m min

3

1

2

m m

P 2 0

D 0 4

S 3 2

m

2.0

0.0

3.0

m m max

2

4

3

m

0

1

2

3

4

5

m0 1 2 3 4 5

P

D

S
M

12. (1 mark) Which, if any, pure actions above are strictly dominated?

(a) P only

(b) D only

(c) S only

(d) D and S

(e) none of the above

Solution
c)—S is strictly dominated. Alice can disregard shooting as a viable
option.

13. (1 mark) Which is the Maximin pure action?

(a) P only

(b) D only

(c) S only

(d) D and S

(e) none of the above

Solution
a)—P.
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14. (2 marks) The Maximin mixed action is:

(a) passing twice as often as dribbling

(b) dribbling twice as often as passing

(c) shooting twice as often as dribbling

(d) passing as often as shooting

(e) none of the above

Solution
a)—Passing twice as often as dribbling.

Let µ be the amount of P in the mixture of P and D. Let the mixtures of
P and D be represented by points P = (x, y) = µ(3, 5)+(1−µ)(5, 1) =
(5− 2µ, 1 + 4µ).

Setting x = y:

5− 2µ = 1 + 4µ

4 = 6µ

µ = 2
3

So M = 2
3
P1

3
D. That is, Alice should pass twice as often as she drib-

bles.

15. (2 marks) Alice could guarantee that her chances of scoring were no
worse than:

(a) 1 in 10

(b) 2 in 10

(c) 3 in 10

(d) 4 in 10

(e) 5 in 10

Solution
c)—no worse than 3 in 10.

Setting µ = 2
3

gives Vm(M) = 1 + 4µ = 1 + 8
3

= 11
3
> 3. By using the

Maximin mixed action, she can guarantee that her chances of scoring
are at least 3 in 10.
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16. (2 marks) Which mixtures of passing and dribbling would be at least
as preferred as shooting in all possible states?

(a) dribbling at least twice as often as passing

(b) passing at least three times as often as dribbling

(c) dribbling no more than three times as often as passing

(d) passing at least as often as dribbling

(e) none of the above

Solution
d)—passing at least as often as dribbling.

The condition that an action be at least as preferred in all states
amounts to weak dominance.

We know that M = (5− 2µ, 1 + 4µ). In order for M to be at least as
preferred to S in all states it must dominate S; i.e., 5 − 2µ > 2 and
1 + 4µ > 3.

Hence µ < 3
2

and µ > 1
2
; i.e., 1

2
< µ < 3

2
.

Because 0 6 µ 6 1, this reduces to 1
2
< µ 6 1. That is, passing at least

as often as dribbling.

17. (2 marks) Which mixtures of passing and dribbling would be preferred
under Maximin to the strategy “always shoot”?

(a) dribbling at least twice as often as passing

(b) passing at least three times as often as dribbling

(c) dribbling no more than three times as often as passing

(d) passing at least as often as dribbling

(e) none of the above

Solution
c)—dribbling no more than three times as often as passing.

The graph below shows the Maximin value of mixtures of P and D (µ
is the amount of P in the P–D mixture). The Maximin value of S is 2.

11



v

0

1

2

3

4

5

µ1
4

1
2

3
4

0 1

m
m

S
Vmin

From the graph we can see that for µ > 1
4
, the Maximin value of the

mixture is above that of S; i.e., passing at least as often as dribbling.
Analytically, because in state m the value of any mixture of P and D is
greater than that of S, the only value that matters is the value in state
m. Therefore we need:

1 + 4µ > 2

µ > 1
4

So the mixture with the least amount of passing is 1
4
P3

4
D; i.e., dribbling

no more than three times as often as passing.

Let p = P (m) be the probability that the goal-keeper will move as
shown.

18. (2 marks) For what range of values of p would it be better for Alice to
dribble than to shoot?

(a) p < 2
3

(b) p > 3
5

(c) p > 2
5

(d) p < 3
5

(e) none of the above

Solution
d)—p < 3

5
.
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The Bayes values of the respective actions are given below:

VB(P) = (1− p)(3) + p(5)

= 3 + 2p

VB(D) = (1− p)(5) + p(1)

= 5− 4p

VB(S) = (1− p)(2) + p(3)

= 2 + p

Setting:

VB(D) > VB(S)

5− 4p > 2 + p

3 > 5p

p < 3
5

v

0

1

2

3

4

5

p1
4

1
2

3
4

0 1

P
D

S

VB

19. (2 marks) Which percentage below gives the proportion of time which,
if the goal-keeper were to move, would most restrict Alice’s chances of
scoring despite her best efforts?

(a) 80%

(b) 70%

(c) 60%

(d) 50%

(e) 40%

Solution
e)—40%
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Setting:

VB(P) = VB(D)

3 + 2p = 5− 4p

6p = 2

p = 1
3

This is the least favourable probability distribution; i.e., move 33%
of the time. Notice from the graph above that for p > 1

3
Alice’s best

option is to pass, which gives increasingly better chances of scoring as p
increases, so in order to keep Alice’s scoring chances as low as possible
the goal-keeper should make his move as close to p = 1

3
as possible. Of

the options above, this is achieved by picking the lowest; i.e., 40%.

End of exam

Total questions: 19
Total marks: 30
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