The University of New South Wales
Session 2, 2017

GSOE9210 Engineering Decisions

Sample mid-term test

Instructions:

• Time allowed: 1 hour
• Reading time: 5 minutes
• This examination paper has 14 pages
• Total number of questions: 19 (multiple choice)
• Total marks available: 30 (not all questions are of equal value)
• Allowed materials: UNSW approved calculator, pencil (2B), pen, ruler, UNSW approved dictionary.
 This exam is closed-book. No books, study notes, or other study materials may be used.
• Answers should be marked in pencil (2B) on the accompanying multiple choice answer sheet
• The exam paper may not be retained by the candidate
1. (1 mark) In a decision tree a leaf node represents:

 (a) a strategy
 (b) a condition
 (c) an outcome
 (d) a random variable
 (e) none of the above

 Solution
 c)—A leaf represents an outcome.

2. (2 marks) A decision tree with \(n \) nodes has how many branches/edges:

 (a) \(\frac{n}{2} \)
 (b) \(n! \)
 (c) \(n \)
 (d) \(n - 1 \)
 (e) none of the above

 Solution
 d)—Each node in a tree, except the root, has a unique parent to which it is connected by a unique branch. Therefore there are \(n - 1 \) branches.

3. (1 mark) Which of the following decision rules will always eliminate (i.e., will never select) weakly dominated strategies:

 (a) MaxiMax
 (b) Maximin
 (c) miniMax Regret
 (d) Laplace’s
 (e) none of the above

 Solution
 d)—Laplace’s rule is the only one that will always eliminate weakly dominated strategies. All others may admit some weakly dominated strategies.

Questions 4 to 8 refer to decision table below.
\[
\begin{array}{c|cc}
&s_1&s_2 \\
\hline
A & v & 3 \\
B & 1 & 4 \\
\end{array}
\]

4. (1 mark) Which is the full range of values of \(v \) for which the \textit{MaxiMax} decision rule would choose A?

(a) \(v \geq 1 \)
(b) \(v \geq 3 \)
(c) \(v \geq 4 \)
(d) for all values of \(v \)
(e) for no value of \(v \)

\textit{Solution}

\(c) - v \geq 4. \)

\(V(A) = \max\{v, 3\} \). \(V(B) = \max\{1, 4\} = 4. \) \(V(A) \geq V(B) \) iff \(\max\{v, 3\} \geq 4. \)

If \(v \leq 3 \) then \(\max\{v, 3\} = 3 < 4 \), in which case B is preferred.

If \(v \geq 3 \) then \(\max\{v, 3\} = v \), in which case A is preferred if \(v \geq 4. \)

Combining, A is preferred if \(v \geq 4. \)

5. (1 mark) Which is the maximum range of values of \(v \) for which the \textit{Maximin} decision rule would choose A?

(a) \(v \geq 1 \)
(b) \(v \geq 3 \)
(c) \(v \geq 4 \)
(d) for all values of \(v \)
(e) for no value of \(v \)

\textit{Solution}

\(a) - v \geq 1. \)

\(V(A) = \min\{v, 3\}. \) \(V_m(B) = \min\{1, 4\} = 1. \) \(V_m(A) \geq V_m(B) \) iff \(\min\{v, 3\} \geq 1. \)

If \(v \geq 3 \) then \(\min\{v, 3\} = 3 \geq 1 \), in which case A is preferred.

If \(v \leq 3 \) then \(\min\{v, 3\} = v \), in which case A is preferred if \(v \geq 1. \)
Therefore, A is preferred if $v \geq 3$ or $1 \leq v \leq 3$. Combining, A is preferred if $v \geq 1$.

6. (1 mark) What is the maximum range of values of v for which Laplace’s decision rule would choose A?

(a) $v \geq 1$
(b) $v \geq 2$
(c) $v \geq 3$
(d) for all values of v
(e) for no value of v

Solution
b)—$v \geq 2$.

$V_L(A) = v + 3$. $V_L(B) = 1 + 4 = 5$. $V_L(A) \geq V_L(B)$ iff $v + 3 \geq 5$.
Therefore, $v \geq 2$.

7. (2 marks) For which range of values of v below would Savage’s miniMax Regret decision rule choose A?

(a) $v \leq 1$
(b) $1 \leq v \leq 2$
(c) $v \geq 2$
(d) for all values of v
(e) for no value of v

Solution
c)—$v \geq 2$.

The regret matrix is:

\[
\begin{array}{c|cc}
 & s_1 & s_2 \\
\hline
A & M - v & 1 \\
B & M - 1 & 0 \\
\end{array}
\]

where $M = \max\{v, 1\}$.

That is:

\[
M = \begin{cases}
 v & \text{if } v \geq 1 \\
 1 & \text{if } v \leq 1
\end{cases}
\]
The two cases are shown below:

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>$v - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>

($v \geq 1$)

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$-v$</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

($v \leq 1$)

For miniMax Regret action A is preferred if $V_M(A) \leq V_M(B)$.

If $v \geq 1$, then:

\[
V_M(A) \leq V_M(B) \\
1 \leq v - 1 \\
v \geq 2
\]

So A would be preferred for $v \geq 2$.

Alternatively, note that if $v \leq 1$, then A is dominated by B. In this case A would be chosen for no value of v.

Therefore the combined range is $v \geq 2$.

8. (1 mark) For which range of values of v shown below would B be weakly dominated by A?

(a) $v \leq 1$

(b) $1 \leq v \leq 3$

(c) $v \geq 4$

(d) for all values of v

(e) for no value of v

Solution
e) For no values of v.

Because the value of action A in state s_2 is strictly less than that of B, it follows that A can never dominate B weakly or strictly, regardless of the value of A in state s_1.

Questions 9 to 11 refer to decision table below.
9. (2 marks) Suppose an agent was indifferent between A and B. What would be the value of the agent’s optimism index α?

(a) $\frac{1}{3}$

(b) $\frac{2}{7}$

(c) $\frac{3}{4}$

(d) $\frac{1}{8}$

(e) none of the above

Solution

d) $\frac{1}{8}$.

Set:

$$V_H(A) = V_H(B)$$

$$\alpha(10) + (1 - \alpha)(2) = \alpha(3) + (1 - \alpha)(3)$$

$$8\alpha + 2 = 3$$

$$\therefore \quad \alpha = \frac{1}{8}$$

10. (2 marks) For which values does the following tree best represent the table above:

(a) $v_1 = 3, v_2 = 10, v_3 = 3, v_4 = 2$

(b) $v_1 = 2, v_2 = 3, v_3 = 10, v_4 = 3$

(c) $v_1 = 10, v_2 = 3, v_3 = 2, v_4 = 3$

(d) $v_1 = 3, v_2 = 3, v_3 = 2, v_4 = 10$

(e) none of the above
11. (2 marks) Which action would be chosen under miniMax Regret?

(a) both A and B
(b) neither A nor B
(c) A only
(d) B only
(e) none of the above

Solution
c)—A.

The regret table is shown below:

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

The maximum regret of A is less than that of B. Hence the miniMax Regret solution is A.
Alice plays football and finds herself in the situation shown above. Alice (blue #10), who has the ball, and a teammate (blue #9), are trying to score against an opposition defender (red #4) and goal-keeper (yellow #1). Suppose Alice has three actions to choose from:

- P pass to her team-mate (blue #9) to shoot;
- D dribble towards goal then shoot; or
- S shoot from where she is.

Alice believes that her team’s chances of scoring if she passes to her team-mate are 3 in 10. The chances of scoring if she dribbles toward goal before shooting are 5 in 10. Her chances of scoring by shooting from where she is are 2 in 10.

There is the possibility that the goal-keeper (yellow #1) might move (m) toward the ball as shown, in which case the chances of scoring by passing and shooting would improve respectively to 5, 3, and the chances of scoring if she dribbles would be reduced to 1.

Solution
The corresponding decision and regret tables for her team’s chances of scoring are shown below:
12. (1 mark) Which, if any, pure actions above are strictly dominated?

(a) P only
(b) D only
(c) S only
(d) D and S
(e) none of the above

Solution

c)—S is strictly dominated. Alice can disregard shooting as a viable option.

13. (1 mark) Which is the *Maximin* pure action?

(a) P only
(b) D only
(c) S only
(d) D and S
(e) none of the above

Solution

a)—P.
14. (2 marks) The *Maximin* mixed action is:

(a) passing twice as often as dribbling
(b) dribbling twice as often as passing
(c) shooting twice as often as dribbling
(d) passing as often as shooting
(e) none of the above

Solution

a)—Passing twice as often as dribbling.

Let μ be the amount of P in the mixture of P and D. Let the mixtures of P and D be represented by points $P = (x, y) = \mu(3, 5) + (1 - \mu)(5, 1) = (5 - 2\mu, 1 + 4\mu)$.

Setting $x = y$:

\[
5 - 2\mu = 1 + 4\mu
\]

\[
4 = 6\mu
\]

\[
\mu = \frac{2}{3}
\]

So $M = \frac{2}{3}P\frac{1}{3}D$. That is, Alice should pass twice as often as she dribbles.

15. (2 marks) Alice could guarantee that her chances of scoring were no worse than:

(a) 1 in 10
(b) 2 in 10
(c) 3 in 10
(d) 4 in 10
(e) 5 in 10

Solution

c)—no worse than 3 in 10.

Setting $\mu = \frac{2}{3}$ gives $V_m(M) = 1 + 4\mu = 1 + \frac{8}{3} = \frac{11}{3} > 3$. By using the *Maximin* mixed action, she can guarantee that her chances of scoring are at least 3 in 10.
16. (2 marks) Which mixtures of passing and dribbling would be at least as preferred as shooting in all possible states?

(a) dribbling at least twice as often as passing
(b) passing at least three times as often as dribbling
(c) dribbling no more than three times as often as passing
(d) passing at least as often as dribbling
(e) none of the above

Solution
d)—passing at least as often as dribbling.

The condition that an action be at least as preferred in all states amounts to weak dominance.

We know that \(M = (5 - 2\mu, 1 + 4\mu) \). In order for \(M \) to be at least as preferred to \(S \) in all states it must dominate \(S \); \(i.e., 5 - 2\mu > 2 \) and \(1 + 4\mu > 3 \).

Hence \(\mu < \frac{3}{2} \) and \(\mu > \frac{1}{2} \); \(i.e., \frac{1}{2} < \mu < \frac{3}{2} \).

Because \(0 \leq \mu \leq 1 \), this reduces to \(\frac{1}{2} < \mu \leq 1 \). That is, passing at least as often as dribbling.

17. (2 marks) Which mixtures of passing and dribbling would be preferred under Maximin to the strategy “always shoot”?

(a) dribbling at least twice as often as passing
(b) passing at least three times as often as dribbling
(c) dribbling no more than three times as often as passing
(d) passing at least as often as dribbling
(e) none of the above

Solution
c)—dribbling no more than three times as often as passing.

The graph below shows the Maximin value of mixtures of \(P \) and \(D \) (\(\mu \) is the amount of \(P \) in the \(P-D \) mixture). The Maximin value of \(S \) is 2.
From the graph we can see that for $\mu \geq \frac{1}{4}$, the Maximin value of the mixture is above that of S; i.e., passing at least as often as dribbling. Analytically, because in state m the value of any mixture of P and D is greater than that of S, the only value that matters is the value in state m. Therefore we need:

$$1 + 4\mu > 2$$

$$\mu > \frac{1}{4}$$

So the mixture with the least amount of passing is $\frac{1}{4}P\frac{3}{4}D$; i.e., dribbling no more than three times as often as passing.

Let $p = P(m)$ be the probability that the goal-keeper will move as shown.

18. (2 marks) For what range of values of p would it be better for Alice to dribble than to shoot?

(a) $p < \frac{2}{3}$
(b) $p > \frac{3}{5}$
(c) $p > \frac{2}{5}$
(d) $p < \frac{3}{5}$
(e) none of the above

Solution
(d) $p < \frac{3}{5}$.

12
The *Bayes* values of the respective actions are given below:

\[
V_B(P) = (1 - p)(3) + p(5) \\
= 3 + 2p \\
V_B(D) = (1 - p)(5) + p(1) \\
= 5 - 4p \\
V_B(S) = (1 - p)(2) + p(3) \\
= 2 + p
\]

Setting:

\[
V_B(D) > V_B(S) \\
5 - 4p > 2 + p \\
3 > 5p \\
p < \frac{3}{5}
\]

19. (2 marks) Which percentage below gives the proportion of time which, if the goal-keeper were to move, would most restrict Alice’s chances of scoring despite her best efforts?

(a) 80%
(b) 70%
(c) 60%
(d) 50%
(e) 40%

Solution

e) — 40%
Setting:

\[V_B(P) = V_B(D) \]
\[3 + 2p = 5 - 4p \]
\[6p = 2 \]
\[p = \frac{1}{3} \]

This is the least favourable probability distribution; \textit{i.e.}, move 33\% of the time. Notice from the graph above that for \(p > \frac{1}{3} \) Alice’s best option is to pass, which gives increasingly better chances of scoring as \(p \) increases, so in order to keep Alice’s scoring chances as low as possible the goal-keeper should make his move as close to \(p = \frac{1}{3} \) as possible. Of the options above, this is achieved by picking the lowest; \textit{i.e.}, 40\%.

End of exam

Total questions: 19
Total marks: 30