
COMP1511 18s1 — Lecture 12

The Data Went Data Way

Andrew Bennett
<andrew.bennett@unsw.edu.au>

Jashank Jeremy
<jashank.jeremy@unsw.edu.au>

Overview

After this lecture, you should be able to…

work with composite data types,
reason about the scope and lifetime of a value,
use dynamic memory management functions

(note: you shouldn't be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!)
give you the foundations you need to develop these skills. remember: programming is like learning any other language, it takes
consistent and regular practice.)

Admin

Don't panic!
assignment 2 …

spec released by tomorrow
discussing it in the lecture

Weekly test #4 … due Wednesday 23:59:59 AEST
week 6 challenges … extended to Friday 23:59:59 AEST
week 8 is quiet week!

no lectures! no tutorials! no labs!
… help sessions still running

Manipulating Data

Computer science is about manipulating data.
(Especially complex data!)

All programming languages have
mechanisms for dealing with composite data:

grouping together related information
into a single logical unit

… Arrays?

Arrays are good, but sometimes they're not:
unknown size, uniform type, …

… Arrays (cont'd)

… what if student 39 drops?
… what if 39 students drop?
… what if we want more �elds?
… what if things drift out of step?

#define N_STUDENTS 1087
#define MAX_NAME_LEN 64

int studentID[N_STUDENTS];
char name[N_STUDENTS][MAX_NAME_LEN];
int tutorial[N_STUDENTS];
int ass1_mark[N_STUDENTS];

What do we want?

grouping related data
data of differing types
accessing each datum

struct

a way to group together
related data of differing types

we refer to the individual pieces of data
as �elds or members

typedef struct _type-name {
 type member;
 [...]
} type-name;

Lifetimes and Scope

Review: Stack Frames

On the stack:
previous frame, return address

parameters, return values
local variables

… values relevant for a function's invocation

Boundedness

Values on the stack will only live
as long as the stack frame does.

we can say a variable has a lifetime,
bounded by the stack frame.

… Boundedness

#define ARRAY_SIZE 10

int *makeArray (int initialValue);
void printArray (int array[ARRAY_SIZE]);

int main (void) {
 int *xs = makeArray (17);
 printArray (xs);
 return 0;
}

int *makeArray (int initialValue) {
 int array[ARRAY_SIZE];
 int i = 0;
 while (i < ARRAY_SIZE) {
 array[i] = initialValue;
 i++;
 }
 printArray (array);
 return array;
}

… Boundedness

The value in array won't live long enough!

Pass a Lower Reference

Take a reference lower on the stack,
pass it up the stack to called functions

Escape Hatches

Global variables! static variables!

however:
Style Guide

… §Global and Static Variables

Summarily: evil.
don't use global variables,

don't use static variables.

https://cgi.cse.unsw.edu.au/~cs1511/18s1/resources/style_guide.html
https://cgi.cse.unsw.edu.au/~cs1511/18s1/resources/style_guide.html#global-and-static-variables

