COMP1511 18s1 — Lecture 12




The Data Went Data Way

AndrewBennett

Jashank Jeremy
<jashank.jeremy@unsw.edu.au>




Overview

After this lecture, you should be able to...

o work with composite data types,
e reason about the scope and lifetime of a value,
e use dynamic memory management functions

(note: you shouldn't be able to do all of these immediately after watching this lecture. however, this lecture should (hopefully!)
give you the foundations you need to develop these skills. remember: programming is like learning any other language, it takes
consistent and regular practice.)




Admin

Don't panic!

assignment 2 ...
o spec released by tomorrow
o discussing it in the lecture
Weekly test #4 ... due Wednesday 23:59:59 AEST
week 6 challenges ... extended to Friday 23:59:59 AEST
week 8 is quiet week!
o no lectures! no tutorials! no labs!
o ... help sessions still running




Manipulating Data

Computer science is about manipulating data.
(Especially complex data!)

All programming languages have
mechanisms for dealing with composite data:
grouping together related information
into a single logical unit




... Arrays?

Arrays are good, but sometimes they're not:
unknown size, uniform type, ...




... Arrays (cont'd)

LY,
64
int [N_STUDENTS];
char [N_STUDENTS][MAX_NAME_LEN];
int [N_STUDENTS];
int EIDEE

... what if student 39 drops?

... what if 39 students drop?

... what if we want more fields?

... what if things drift out of step?




What do we want?

e grouping related data
e data of differing types
e accessing each datum




struct

a way to group together
related data of differing types
we refer to the individual pieces of data
as fields or members

typedef struct _type-name {
type member;

[...]

} type-name;




Lifetimes and Scope




Review: Stack Frames

On the stack:
previous frame, return address
parameters, return values
local variables

... values relevant for a function's invocation




Boundedness

Values on the stack will only live
as long as the stack frame does.

we can say a variable has a lifetime,
bounded by the stack frame.




... Boundedness

#define ARRAY_SIZE 10

int *makeArray (int initialValue);
void printArray (int array[ARRAY_SIZE]);

int main (void) {
int *xs = makeArray (17);
printArray (xs);
return 0;

}

int *makeArray (int initialValue) {

int array[ARRAY_SIZE];

int 1 = 0;

while (i1 < ARRAY_SIZE) {
array[i] = initialValue;
1++;

}

printArray (array);

return array,




... Boundedness

The value in array won't live long enough!




Pass a Lower Reference

Take a reference lower on the stack,
pass it up the stack to called functions




Escape Hatches

Global variables! static variables!

however:

Summarily: evil.
don't use global variables,
don't use static variables.



https://cgi.cse.unsw.edu.au/~cs1511/18s1/resources/style_guide.html
https://cgi.cse.unsw.edu.au/~cs1511/18s1/resources/style_guide.html#global-and-static-variables

